

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

 ENTERPRISE INFORMATION LIFECYCLE MANAGEMENT

 BBN TECHNOLOGIES CORPORATION

JANUARY 2011

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-007

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2011-007 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

JAMES P. HANNA JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

January 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

October 2009 – October 2010
4. TITLE AND SUBTITLE

ENTERPRISE INFORMATION LIFECYCLE MANAGEMENT

5a. CONTRACT NUMBER
FA8750-10-C-0021

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Joseph Loyall
Jeffrey Cleveland
Jonathan Webb
Shane Clark

5d. PROJECT NUMBER
S2LM

5e. TASK NUMBER
05

5f. WORK UNIT NUMBER
06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BBN Technologies Corporation
10 Moulton Street
Cambridge MA 02138-1119

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISE
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RISE

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-007

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA#88ABW-2011-0025
Date Cleared: 5 January 2011.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Information Lifecycle Management is a key aspect of Information Management, determining when information should be moved to
backing store to free up local, high speed storage for critical information needs. The Value Factor based Information Lifecycle
Management (VFILM) project under the Enterprise Information Lifecycle Management contract developed concepts and a prototype
for mission-driven information lifecycle management that includes automated triggering of information migration based on mission
events and mission-based policy, valuation of information using dependencies, and migration and retrieval of information objects
and groups. The resulting prototype software works with AFRL Information Management services and repositories and has been
demonstrated on relevant USAF operational scenarios. The software prototype was validated with experiments that evaluated its
functionality, performance, and compared it to age-based Hierarchical Storage Management (HSM) approaches. This report is the
final technical report for the VFILM project and describes the research, development, and evaluation results from the project.
15. SUBJECT TERMS

Information Lifecycle Management, Information Management, Fuzzy Logic, Hierarchical Storage Management

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

105

19a. NAME OF RESPONSIBLE PERSON

JAMES HANNA

a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

TABLE OF CONTENTS

Section Page

List of Figures .. iii
List of Tables .. v
1.0 SUMMARY ... 1

1.1 Goals of the VFILM Project .. 1
1.2 Summary of Major Results .. 1

2.0 INTRODUCTION ... 2
2.1 Project Objective .. 2

2.2 Project Overview .. 2
2.3 Background .. 2

2.3.1 Information Lifecycle and Hierarchical Storage Management Systems 2
2.3.2 Hierarchical Storage Levels .. 3

2.4 Novel Research Aspects of the VFILM Project ... 3
2.5 Primary results.. 4
2.6 Report organization .. 4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 5
3.1 Core Information Management Services.. 5
3.2 The Need for Information Lifecycle Management .. 6
3.3 Challenges of Information Lifecycle Management Design and Development 6

3.4 VFILM Approach ... 7
3.4.1 Spiral Approach .. 8
3.4.2 Consistency with Existing Phoenix IM Services .. 8
3.4.3 Approach to ILM Service ... 8
3.4.4 Approach to HSM Functionality – An Abstraction Layer .. 9

3.5 Background on HSM Capabilities ... 9
3.6 Background in Fuzzy Logic ... 10
3.7 Experimental methodology .. 12

3.7.1 VFILM Metrics ... 13
3.7.2 Experiment Definitions ... 14
3.7.3 Experiment Infrastructure ... 15

4.0 RESULTS AND DISCUSSION .. 16

4.1 VFILM Architecture .. 17
4.2 VFILM Prototype Design... 18

4.2.1 Design of the ILM Service .. 19

4.2.2 Design of the ILM Event Manager ... 20
4.2.3 Design of the Mission Domain Model .. 22
4.2.4 Design of the ILM Controller ... 22
4.2.5 Design of the Value Depreciation Function .. 23
4.2.6 Design of the Group Manager... 24

4.2.7 Design of VFILM Policy .. 25
4.2.8 Design of the ILM-HSM Adapter ... 26

Approved for Public Release; Distribution Unlimited.

 i

4.3 VFILM Prototype Implementation... 29
4.3.1 Prototype Implementation of the ILM Service ... 29
4.3.2 Modifications to the Repository Service... 30
4.3.3 Prototype Implementation of the ILM Event Manager ... 32
4.3.4 Prototype ILM Event Handler Interface ... 33
4.3.5 Prototype Implementation of the ILM Controller ... 37
4.3.6 Prototype Implementation of the Value Depreciation Function 37
4.3.7 Prototype Implementation of the Group Manager .. 57
4.3.8 Prototype Implementation of the ILM-HSM Adapter .. 58

4.4 VFILM Demonstration ... 60
4.5 VFILM Experiment Results ... 63

4.5.1 Summary of Results .. 63
4.5.2 Functional Metric F1 – ILM Responsiveness to Events ... 64
4.5.3 Functional Metric F2 – Maintaining Level 0 Store .. 65
4.5.4 Functional Metric F3 – Publication Correctness .. 65
4.5.5 Functional Metric F4 – Query Correctness ... 66
4.5.6 Performance Metric P1 – VDF Scalability ... 66
4.5.7 Performance Metric P2 – HSM Scalability .. 69
4.5.8 Performance Metric P3 – Publication Performance .. 71
4.5.9 Performance Metric P4 – Query Performance .. 72
4.5.10 Performance Metric P5 – Mission Effectiveness .. 73
4.5.11 Summary of Experimental Results ... 74

4.6 Lessons Learned & Recommendations .. 74
4.7 Directions for the Future .. 75

5.0 CONCLUSIONS.. 79
6.0 REFERENCES .. 80
7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 82
APPENDIX – CHRONOLOGICAL ACCOUNT OF TECHNICAL STATUS 83

Approved for Public Release; Distribution Unlimited.

 ii

LIST OF FIGURES

Figure Page

Figure 1. Example levels of hierarchical storage. ... 3
Figure 2. General characterization of hierarchical storage levels based on performance and cost. 3
Figure 3. Core Information Management Services ... 5
Figure 4. Traditional set membership vs. fuzzy set membership. .. 11
Figure 5. The VFILM architecture. ... 18
Figure 6. Design of the ILM Service. ... 20
Figure 7. Design of the ILM Event Manager. ... 21
Figure 8. The combination of fuzzy input sets into relative membership in a Move set using fuzzy

logic rules. ... 24
Figure 9. Information organized into many groupings, some of which have associated lifecycles.

 ... 24
Figure 10. The Group Context contains the information needed to represent a group of IOs. 25
Figure 11. Design of the ILM-HSM Adapter. .. 27
Figure 12. The ILM-HSM can move IOs from level 0 to level 1, retaining the metadata in level 0

with updated references to IOs in level 1. ... 28
Figure 13. The ILM-HSM can move metadata and IOs together from level 0 to level 1. 28
Figure 14. Layout of FCLRule.. 38
Figure 15. Graphical representations of the MIN and PROD activation methods. 40
Figure 16 Use of MIN for an activation method, where the condition has a value of 0.5, and the

consequence is move IS unlikely. .. 41
Figure 17. Use of PROD for an activation method, where the condition has a value of 0.5, and

the consequence is move IS unlikely. .. 41
Figure 18. Piece-wise linear graphs for the membership functions of the small and large fuzzy

sets. .. 43
Figure 19. Piece-wise linear graphs for the membership functions of move is likely and unlikely.

 ... 44
Figure 20. Example membership set where move‟s degree of membership in unlikely and likely

is ~0.7 and ~0.2, respectively.. 45
Figure 21. Example piece-wise linear membership functions .. 45
Figure 22. Example triangular membership functions .. 46

Figure 23. Example trapezoidal membership functions ... 46
Figure 24. Example Gaussian membership functions... 47
Figure 25. Example generalized bell membership functions .. 47
Figure 26. Example sigmoidal membership functions ... 48

Figure 27. Example singleton membership functions... 48
Figure 28. The missionStatus fuzzy set. The vertical line indicates the membership value of the

IO in this set. ... 51

Figure 29. The age fuzzy sets. The vertical line indicates the membership value of the IO in the
old set. ... 51

Figure 30. The size fuzzy sets. The vertical line indicates the membership value of the IO in the
small and large sets. .. 52

Approved for Public Release; Distribution Unlimited.

 iii

file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857474
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857475
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857476
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857477
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857478
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857479
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857480
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857481
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857481
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857482
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857482
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857483
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857484
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857485
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857485
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857486
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857487
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857488
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857491
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857491

Figure 31. The move sets, likely and unlikely, defined around a center of gravity. 53
Figure 32. The result of evaluating Rule 1. .. 54
Figure 33. The result of evaluating Rule 2. .. 54
Figure 34. The result of evaluating Rule 3. .. 55
Figure 35. The result of evaluating Rule 4. .. 55
Figure 36. The result of evaluating Rule 5. .. 56
Figure 37. The result of evaluating Rule 6, the final rule. The vertical line indicates the output

value of move. ... 56
Figure 38. Location Demo GUI .. 61
Figure 39. Value Histogram from VFILM Demonstration ... 61
Figure 40. Free Space GUI from VFILM Demonstration .. 62

Figure 41. VFILM maintaining level 0 store: IO moves based “begin move” and “stop move”

thresholds. ... 66
Figure 42. The time to evaluate IOs scales linearly with the number of IOs evaluated. 67
Figure 43. The time to evaluate IOs scales linearly with larger IO sizes as well. 67
Figure 44. The VDF does not scale linearly with the size (in MB) of the evaluation set. 68
Figure 45. The HSM only scales linearly when all IOs are of the same size. 70
Figure 46. The HSM does not scale linearly with the number of bytes moved. 71
Figure 47. Using the same valuation function between multiple ILM instances will result in

approximately the same IO distribution. ... 77
Figure 48. Using different valuation functions can result in a better distribution of IOs in level 0

store across multiple repositories. ... 78

Figure 49. Network topography, endpoint requirements, and bandwidth availability can be taken
into account to move IOs close to the clients that need them. .. 78

Approved for Public Release; Distribution Unlimited.

 iv

file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857511
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857512
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857513
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857514
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857514
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857515
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857516
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857517
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857518
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857519
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857520
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857520
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857521
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857521
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857522
file:///C:/Users/hanna/Desktop/VFILM-FTR.docx%23_Toc277857522

LIST OF TABLES

Table Page

Table 1. Functional Metrics Defined for VFILM ... 13
Table 2. Performance Metrics Defined for VFILM .. 14
Table 3. Design of prototyped VFILM components. .. 19
Table 4. Mission Events and mapping to ILM Events representing the prototype VFILM Mission

Domain Model. ... 22
Table 5. ILM Events implemented by the ILM Controller and their evaluation. 23
Table 6. The Mission Events in the Default Mission Domain Model .. 34
Table 7. Fields in the ILM Policy Context ... 35

Table 8. An Example Translation from a QED Policy to an ILM Group Context. 36
Table 9. Fuzzy Variables prototyped in the VFILM prototype .. 38
Table 10. Mapping from Fuzzy Input Variable Names to Fuzzy Variables 49
Table 11. The Fields in the Group Context... 57
Table 12. Accessor classes implemented in the Group Manager prototype 58
Table 13. Functional Metrics, Tests, and Results ... 63
Table 14. Performance Metrics, Experiments, and Results .. 64
Table 15. Comparison of the ms/IO time to execute the VDF ... 69
Table 16. Phoenix publication performance and VFILM publication performance. 72
Table 17. Summary of Phoenix vs VFILM publication performance. ... 72
Table 18. Phoenix query performance and VFILM query performance. 73

Table 19. Summary of Phoenix vs. VFILM query performance. ... 73
Table 20. The time (in milliseconds) spent in the evaluation function for both the single-factor

value function and the fuzzy logic VDF. .. 74

Approved for Public Release; Distribution Unlimited.

 v

1.0 SUMMARY

This document is the final technical report for the Value Factor based Information Lifecycle

Management (VFILM) project under the Enterprise Information Lifecycle Management contract.

1.1 Goals of the VFILM Project

The goals of the VFILM project are to research, develop, and evaluate technology for managing
the lifecycle of information and enable the use of Hierarchical Storage Management (HSM) in
information-centric, mission-critical systems.

1.2 Summary of Major Results

VFILM developed concepts and a prototype for mission-driven information lifecycle manage-
ment that includes automated triggering of information migration between storage levels based
on mission events and mission-based policy, valuation of information based on its urgency to
ongoing mission operations, grouping of information based on common attributes and dependen-
cies, and migration and retrieval of information objects and groups.

The resulting prototype software works with AFRL Information Management (IM) services
and repositories and was demonstrated on relevant USAF operational scenarios. We validated
the software prototype with experiments that evaluated its functionality, performance, and com-
pared it to age-based HSM approaches.

The VFILM project resulted in the following significant results:

 A prototype Information Lifecycle Management (ILM) service and HSM interface that
provides mission-aware information valuation, mission-driven movement of information
between levels of storage, and support for AFRL Phoenix IM services, Information Ob-
jects (IOs), and repositories.

 A novel approach to information valuation, supporting an extensible multi-factor assess-
ment of the relative values of information using fuzzy logic. The approach produces a
partial order of information depreciation, handles dynamic conditions that can change the
worth of information, and avoids the thrashing that is possible with fixed or static valua-
tion thresholds.

 A set of experimentation results and unit tests, which are useful as a functional and per-
formance test suite for ILM services.

Approved for Public Release; Distribution Unlimited.

 1

2.0 INTRODUCTION

2.1 Project Objective

The objective of the VFILM project is to research, develop, and evaluate technology for manag-
ing the lifecycle of information and enable the use of Hierarchical Storage Management (HSM)
in information-centric, mission-critical systems.

VFILM developed concepts and a prototype for mission-driven information lifecycle man-
agement that includes automated triggering of information migration based on mission events
and mission-based policy, valuation of information based on its urgency to ongoing mission op-
erations, grouping of information based on common attributes and dependencies, and migration
and retrieval of information objects and groups.

The resulting prototype software works with AFRL IM services and repositories and was
demonstrated on relevant USAF operational scenarios. We validated the software prototype with
experiments that evaluated its functionality, performance, and compared it to age-based HSM
approaches.

2.2 Project Overview

The VFILM project ran from October 28, 2009 to October 28, 2010. BBN Technologies per-
formed all technical work under the project for the project. The AFRL Program Manager (PM)
was James Hanna. The BBN Principal Investigator (PI) and PM was Dr. Joseph Loyall. The
BBN Technical Lead was Jonathan Webb. The primary BBN technical contributor was Jeffrey
Cleveland.

2.3 Background

2.3.1 Information Lifecycle and Hierarchical Storage Management Systems

Information Lifecycle Management (ILM) solutions available at the beginning of this project
took the following forms [4][25]:

 Storage-centric offerings, i.e., multiple storage solutions with different capacity and price
characteristics and software and consulting to use it (the point of view of storage ven-
dors);

 Technologies for Hierarchical Storage Management (HSM), i.e., automatically moving
information between storage levels (the point of view of some software vendors); or

 Business processes pertaining to the value, retention, and management of information
(the point of view of some services companies).

Many current ILM and HSM technologies are variations on backup and retrieval software.
They only work on files or documents; they move data based on age or time/frequency of access;
and they are only triggered by storage full situations or by time.

Whereas much focus in ILM centers around the HSM part, most existing HSM offerings are
mechanistic in nature, providing information movement and retrieval based on file systems and
standardized control interfaces. They are invoked, manually or automatically, when storage
space gets tight or based exclusively on time.

Approved for Public Release; Distribution Unlimited.

 2

2.3.2 Hierarchical Storage Levels

It is common in HSM to categorize levels
of storage (level 0, level 1, level 2, etc.)
based on their relative speed, capacity, and
cost, as shown in Figure 1. In general,
lower storage levels are considered higher
speed, lower latency, more costly, and
lower capacity, as shown in Figure 2. In
operational terms, level 0 is the most ac-
cessible to ongoing missions (e.g., onboard
storage on tactical platforms), where levels
1 and higher increase in capacity and la-
tency to access information by edge plat-
forms.

In reality, these levels and the media
that occupy them are not a total order. For
example, the capacity of modern disk drives
exceed the capacity of a single optical disk,
the cost of tape is not necessarily less than
that of optical disks, and the capacity of
multiple optical disks and multiple tapes is
comparable (virtually unlimited). Further-
more, some of the storage media are not
very relevant. Specifically, it is not relevant
to consider RAM and cache when discuss-
ing HSM technology, since they typically
fall under the control of the operating sys-
tem.

2.4 Novel Research Aspects of the

VFILM Project

The VFILM project addresses several novel aspects beyond the scope of existing HSM systems.

 The urgency of information is related to its importance to ongoing and future mission op-
erations, whereas off-the-shelf HSM solutions focus on the simple characteristics of age
and time of last reference. Some very high value information to particular missions can
be referenced infrequently, e.g., nuclear command codes, emergency medical informa-
tion, or panic room or alarm codes.

 Furthermore, the value of information is determined by varied and sometimes complex
characteristics such as its source, type, relation to other information, and content. Ulti-
mately the lifecycle of information depends on its semantics (how it is used) and connec-
tion to other information. Some information degrades in value when a mission epoch is
reached, e.g., ISR information is less useful for real-time ISR at the end of a mission.
Other information degrades when a new value is received, e.g., a new Blue Force Track
supersedes old tracks reporting the position of the same forces. Frequently, information
simply moves from being important for one use (e.g., an on-going mission) to being im-

Figure 1. Example levels of hierarchical sto-

rage.

Increasing

capacity

Increasing

latency

Decreasing

cost

RAM, cache

Flash memory

Local hard disk drive

Serial ATA (SATA) disks (e.g., in a

RAID)

Storage area network (SAN) hard disk

or Network Attached Storage (NAS)

Optical disks (CD, DVD)

Tape

Figure 2. General characterization of hierar-

chical storage levels based on performance

and cost.

Level 0

Level 1

Level 2

Level 3

Approved for Public Release; Distribution Unlimited.

 3

portant for another (e.g., an after action review or mission reconstruction). Therefore, the
relative importance of missions or use, and the affiliation of information to missions or
uses of different importance should be considered in information lifecycle valuation.

 Whereas quantifying the age and time of last reference is straightforward, it is more diffi-
cult to quantify the semantics of its use, affiliation to important missions, relation to other
sets of information, supersession by other values, and varied other characteristics. In this
way, as part of VFILM, we have explored the research areas of content- and context-
driven value judgments.

2.5 Primary results

The VFILM project resulted in the following significant results:

 A prototype ILM service and HSM interface that provides mission-aware information
valuation, mission-driven movement of information between levels of storage, and sup-
port for AFRL Phoenix IM services, Information Objects, and repositories.

 A novel approach to information valuation, defining a Value Depreciation Function
(VDF) that supports an extensible multi-factor assessment of the relative values of infor-
mation using fuzzy logic. The VDF produces a partial order of information depreciation,
handles dynamic conditions that can change the worth of information, and avoids the
thrashing that is possible with fixed or static valuation thresholds.

 A set of experimentation results and unit tests, which are useful as a functional and per-
formance test suite for ILM services.

2.6 Report organization

The report is organized as follows:

 Section 1.0 provides a one-page summary of the objectives and main results of the
project.

 Section 2.0 provides an introduction, including the project objective, major results, back-
ground, research aspects, and the primary results.

 Section 3.0 provides the project‟s methods, assumptions, and procedures.
 Section 4.0 provides the project‟s results and discussion.
 Section 5.0 provides some concluding remarks.

Approved for Public Release; Distribution Unlimited.

 4

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

We used a spiral approach to rapidly prototype the VFILM capability. During the 12 month pe-
riod of performance for the project, we developed two prototypes, each at the end of a six month
spiral. The second, and final prototype, was an enhancement of and built upon the capabilities of
the first.

This section describes the underlying assumptions and methods upon which we based the
VFILM research, and the procedures that we followed in producing the VFILM results.

First, we focused on developing ILM capabilities for IM services and, as such, assumed the
existence of a set of IM services. As described in Section 3.1, we focused on the Phoenix set of
core IM services developed by AFRL under other projects. Section 3.2 describes the underlying
set of requirement and technology drivers for establishing information lifecycle management in
IM services as represented by Phoenix, i.e., the rationale, reasons, and needs motivating the de-
velopment of ILM capabilities for IM services.

Section 3.3 describes the research challenges associated with designing and developing ILM
capabilities. Section 3.4 describes the approach that we took to meeting these challenges. Some
of the driving principles and assumptions underlying our approach described in Section 3.4 are
that we should reuse as much of the existing Phoenix services as possible and, therefore, not
change the semantics of Phoenix IM service operation needlessly. Sections 3.5 and 3.6 provide
background information about HSM capabilities and the fuzzy logic basis for our valuation algo-
rithm, respectively. Finally, Section 3.7 describes our experimentation methodology, including
the experiments we defined and the metrics we collected.

3.1 Core Information Management Services

Figure 3 shows a set of core information management services for net-centric operations in
AFRL‟s Phoenix software [9], which includes the following:

1. Submission Service – Receiving information objects entering the system as the result of pub-
lishing.

Figure 3. Core Information Management Services

Submission Service

Dissemination

Service

Producers

Registered

Predicates

Broker Service

Subscribers

Query clients

Register
Subscription

Archive

Query predicate

Query resultsQuery
results

Published IO

Archive

Service

Query

Service

Information
Object (IO)=

IO
Repository

Approved for Public Release; Distribution Unlimited.

 5

2. Brokering Service – Matching of registered subscriptions with published information.

3. Archiving Service – Insertion of published information into an information repository.

4. Query Service –Evaluation of a query operation and subsequent retrieval of results.

5. Dissemination Service – Delivery of the results of brokering (a single IO) to matched clients
(potentially many) and delivery of the results of a query (potentially many IOs) to the reques-
tor (a single querying client).

3.2 The Need for Information Lifecycle Management

USAF AFRL IM systems and services need to include an ILM solution. Currently such systems,
exemplified by the Phoenix Core Services, default to retaining all archived information. They
provide no specific support for cleaning up information repositories that are reaching their satu-
ration point, except through manual administrative interfaces and database interfaces outside the
IM services. Thus, when repositories fill, information will be lost (in an unmanaged manner),
archive operations will fail, software exceptions will be thrown, or in the worst case the IM ser-
vices will fail.

Repositories will fill up and are likely to when they are needed the most, even with modern
disks with the capacity of many Gigabytes or Terabytes. Consider that during Operation Ana-
conda in March 2002, U.S. air forces flew 65 combat sorties per day [13]. Thirty minutes of ISR
video from a UAV in compressed MPEG-2 format requires 1.2 GB of disk space. A single high
resolution RGB image in TIFF format (2248x2080 pixels) such as might be used for battle dam-
age assessment or aimpoint generation requires over 13 MB of space.

An ILM service should manage how and what gets retained in each storage level, so that

 Critical information urgent to ongoing and upcoming missions is readily accessible.
 High speed, high cost storage is used for the information that is most critical to ongoing

and upcoming missions.
 Movement of information is based on a decrease in value to ongoing or upcoming mis-

sions and storage space being needed for higher value, more critical information.
 Support for information repositories and IM operations, e.g., query and archive, is main-

tained.

In contrast to most of the solutions offered today, the military needs ILM solutions that are
mission-driven, not simply triggered by a lack of available space or time, are mission-aware, not
simply moving the oldest or least recently used data, and work with a variety of structured in-

formation objects, not just files or opaque documents.

3.3 Challenges of Information Lifecycle Management Design and Development

VFILM set out to tackle harder issues in information valuation, lifecycle management, and mi-
gration than traditional HSM solutions.

We set a design goal of separating the ILM service from the HSM functionality. The ILM de-
termines the valuation of information and when information should be moved, and the HSM per-
forms the actual movement and potentially monitoring of the storage.

Designing and developing an ILM service included the following challenges:

 Determining when information‟s value is sufficiently degraded (relative to other informa-
tion) to move to backing store. We wanted an information valuation function that could

Approved for Public Release; Distribution Unlimited.

 6

consider a variety of measurable attributes and factors that could make information more
or less valuable.

 Grouping related information that should be moved together. In IM systems like those we
are targeting, information can be related through derivation or common association. For
example, there might be multiple versions of information derived from a common raw
sensor collection for different uses. Likewise, a set of information collected by a specific
platform during a period of time or when the platform was in a particular area is useful
for some purposes as a group. HSM systems that treat each information element as a sep-
arate, independent file lose the important associations that can affect its valuation and its
use. We wanted our ILM service to be able to treat groups of information collectively,
have group association factored into valuation and movement decisions, and recognize
that groups can overlap.

 Triggering information movement at the appropriate times, i.e., by events associated with
the mission profile and not simply when storage is exhausted or on a fixed schedule. Cer-
tainly having a fixed threshold and moving information when it becomes older than a cer-
tain value or has not been accessed in a pre-determined amount of time is easy to imple-
ment and simple to understand. However, this could lead to moving away important in-
formation, thrashing, and accidental memory overload or underutilization. We wanted the
ILM to respond to multiple types of events that could independently trigger information
valuation and/or movement, so that changes in mission conditions, patterns of usage, sto-
rage needs, policy, and other factors could trigger information valuation and movement.

Designing and developing an HSM interface included the following challenges:

 Designing or adapting an HSM that works with higher level concepts, including mission-
and information-orientation. Most HSMs work at the filesystem level and do not consider
what information is used for and its granularity. Furthermore, many HSMs are tied to par-
ticular filesystems, hardware, or processes, which does not provide the flexibility and
power that military operations require.

 Making the HSM as invisible and automatic as possible. The HSM should be able to
access and retrieve information no matter where it exists, and should retain the existing
IM publish, archive, and query services. However, we realized also that supporting mul-
tiple repositories in hierarchical storage means that the query service can provide more
options to query clients, and we wanted to expose these so that they could be used, while
retaining the current IM query semantics as the default.

 Because of the emphasis on filesystems and processes, existing HSM solutions are appli-
cable to enterprise situations. We recognized a large gap in using these solutions in tac-
tical environments. Therefore, we wanted to build our ILM service and HSM interface to
work with varying HSM solutions including those that would be appropriate for tactical
situations and might not exist in a mature form at this time.

3.4 VFILM Approach

Our approach was to separate the ILM and HSM functionality and design and prototype them as
separate services and mechanisms. Our rationale for doing this was twofold:

 It allows information valuation and movement to be treated as separate actions, but to be
related if necessary. Information valuation changes in response to events associated with

Approved for Public Release; Distribution Unlimited.

 7

missions, information, or other elements. For example, when a mission ends, all informa-
tion created or associated with that mission might depreciate in value, but there is no need
to move the information at that point unless space is needed. Specifically, information
valuation is triggered by events associated with changing the urgency or usefulness of in-
formation, whereas information movement is triggered by events associated with space
usage and needs. Some events, such as an event associated with preparation for a mis-
sion, might trigger both information valuation and movement.

 Both elements are useful independently of, or in conjunction with, each other. An ILM
service is a useful capability, and should be able to work with a variety of HSM func-
tions. The ILM and the HSM should not be tightly coupled so that they can be used in
other contexts and with other services/components.

The VFILM approach treats the ILM and HSM as management services. The following sec-
tions describe some of the foundations of the approach we took during the VFILM project to de-
sign and implement an ILM service and HSM capability.

3.4.1 Spiral Approach

The VFILM project was organized into two spirals, each approximately six months in duration.
The first spiral designed and developed a core set of ILM and HSM functionality, producing a
rapid prototype by midway through the project‟s period of performance and focusing on the fol-
lowing aspects:

 A first version ILM service
 A first version information valuation function
 A first set of ILM, system, and mission events
 An ILM-HSM interface and representative HSM capability
 An experimentation and evaluation plan
The second spiral then expanded upon and enhanced the Spiral One basis, producing the final

prototype, and focusing on the following aspects:

 An enhanced ILM service
 A design and prototype implementation of ILM policy
 A design and implementation of information grouping
 Experimentation
 Demonstration of the VFILM prototype to AFRL
 Documentation of the VFILM prototype and research results.

3.4.2 Consistency with Existing Phoenix IM Services

One of the goals of our approach was to develop a service-oriented ILM, so that it will work with
multiple service-oriented data archive services. We designed our prototype implementation to
work with AFRL‟s Phoenix IM services and to minimize changes to the baseline Phoenix code.

3.4.3 Approach to ILM Service

Our approach was to create an ILM service that decides when information should move between
levels, what information should move, and manages the following aspects of the information li-
fecycle:

Approved for Public Release; Distribution Unlimited.

 8

 The value of information and the factors that can contribute to an increase or decrease in
information value. Most ILM and HSM approaches available rely on recentness or fre-
quency of information access to determine where it should reside [2]. This is insufficient
in military situations because it ignores the inherent value of information and its criticali-

ty to ongoing operations. The access patterns of an IO contribute to its value, but are not
the only factors. Mission-related information can be of higher or lower value based on its
urgency to a mission and how rapidly it must be provided if accessed (necessitating its
availability in local store). Other work has introduced information value as a key basis for
ILM [2]. We expand on this work in two novel ways, by incorporating mission-oriented
aspects that affect information value and by the way we represent the value function.

 The grouping of information, so that related information can be moved and/or retrieved
together when appropriate. Traditional ILM and HSM focus on files and documents, an
80% solution appropriate for most business needs. The VFILM Approach supports files
and documents, but also supports a richer organization of information, including in-
stances of Phoenix Information classes. Our approach also supports grouping related and
derivative information, e.g., based on association with a mission, sortie, or platform;
common attributes (e.g., age); and other aspects.

 The triggers of information movement, which for existing HSM solutions are generally
limited to when space becomes needed or specific scheduled times. This is not sufficient
for USAF needs because when space is reaching capacity might be exactly when addi-
tional space is most needed by the mission and might be when the time and resources
needed to move information to free up space are least available. We utilize a rich set of
triggers to invoke the ILM to decide whether information should be moved, how much,
and when, including the need for space, events such as mission epochs, and proactively
when the ILM and HSM functions would not impact mission operations.

3.4.4 Approach to HSM Functionality – An Abstraction Layer

We chose to develop an interface to HSM functionality, i.e., the ILM-HSM Adapter, and to de-
velop representative HSM functionality for the following reasons:

 We conducted an investigation of off-the-shelf HSM systems (described in Section 3.5).
They varied significantly. Creating an abstraction layer and interface enabled us to design
and implement the ILM service to work with a variety of HSM approaches.

 Our investigation indicated that utilizing an off-the-shelf HSM capability could entail
significant investment of money and time, and would result in a VFILM prototype that
would be tied to a specific filesystem or operating system.

3.5 Background on HSM Capabilities

Hierarchical Storage Managers come in many flavors and are described by various names, in-
cluding Automated Availability, Data Migration, and Data Storage Management. Almost without
exception, they deal with file-level migration.

High-end HSM implementations include IBM‟s Tivoli Storage Manager HSM, HP‟s File

Archiving and Information Management Software, Unylogix HSM, and SGI‟s Data Migration

Facility. Many of the high-end HSM implementations, such as IBM's Tivoli and HP's Informa-
tion Management Software, offer integration with higher-level storage applications, such as
Oracle databases or Exchange email servers. However, these integration options essentially map
the application-specific stores to normal files and usually have fairly simplistic operational use.

Approved for Public Release; Distribution Unlimited.

 9

For example, IBM's Tivoli Storage Manager for Databases provides integration with Oracle da-
tabases, but the only things that become managed by the HSM are the backups and archive files
produced by the Oracle Recovery Manager (RMAN).

Many HSM systems strive to be invisible to users. These HSM systems, which include IBM’s

Tivoli HSM for Windows, HP File Archiving, Unylogix HSM, and SGI's Data Migration Facility,
provide an interface that looks like a normal file system, but the files might be in any level of
storage.

The high end HSM solutions were too expensive and proprietary for us to directly acquire
and utilize for VFILM. For our VFILM prototype, we needed an HSM that is representative, but
also economical. We investigated several open-source HSM solutions, including DVD-Vault,
OpenSMS, Sun’s Storage and Archive Manager for the Quick File System (SAM/QFS), OpenSo-

laris Automatic Data Migration (ADM), and Sun’s Lustre file system.
From our investigation, we could not identify any suitable open-source HSM capability.

Most work with specific filesystems. For example, Unylogix HSM supports only Solaris, while
IBM Tivoli Storage Manager HSM and HP File Archiving support Windows. SGI's Data Migra-
tion Facility supports SUSE Linux Enterprise Server. Other HSMs are tied to specific hardware.
For example, Unylogix HSM has a specific list of supported hardware storage devices (including
optical jukeboxes and tape libraries). DVD-Vault works with DVD, Sony‟s ProData (PDD), or

Blu-Ray SCSI Library. Some of the solutions worked with specific databases. HP Database Arc-
hive supports Microsoft SQL-Server and Oracle and Tivoli Storage Manager for Databases sup-
ports Oracle.

We concluded that the open-source HSM implementations were risky. They either assume
the presence of specific hardware (e.g., DVD-Vault [6]), have not been maintained for several
years (e.g., OpenSMS [21]), or are only partially open-source (e.g., SAM/QFS [22], ADM [23],
and a beta version of an HSM component of the Lustre filesystem [18]).

As the most promising of our original investigation, we conducted a more in-depth investiga-
tion of the Lustre HSM component. Lustre is a high performance distributed filesystem, targeted
for high performance computing clusters [5]. In the Lustre HSM project, Lustre was adding an
interface to support multiple HSMs. At the time of our investigation, the Lustre HSM project had
not yet released any software. The target system they were developing was not an HSM, but an
interface for Lustre to enable it to interface to existing HSMs. It utilized the open source Robin
Hood policy engine to monitor disk space usage and control the HSM functions. Because it was
not targeting development of an HSM and because there was no released software, Lustre and
the Lustre HSM project did not offer an off-the-shelf HSM for us to utilize.

Because of that, we developed representative HSM functionality for the VFILM prototype
and demonstrations. We also developed an ILM-HSM adapter layer that works with our repre-
sentative HSM functionality for demonstration and validation, and also serves as the interface
point to off-the-shelf HSM capabilities.

3.6 Background in Fuzzy Logic

One of the key challenges for VFILM was capturing programmatically when an IO‟s value was

sufficiently depreciated to warrant moving it from level 0 store, in favor of another IO to occupy
the same space (presumably because its value to ongoing operations is greater) or in favor of
maintaining the space free for occupation by future IOs (presumably because the potential value
of the future IO to ongoing operations is greater). We chose to employ fuzzy logic to realize our

Approved for Public Release; Distribution Unlimited.

 10

Value Depreciation Function because two properties of information depreciation and valuation
match well to the principles underlying fuzzy logic:

 Whether an IO has sufficiently depreciated in value to move or not is not completely true
nor completely false. Instead, it is more or less true or false depending on the other choic-
es available, such as how bad the space is needed, what else there is to move, and what
the information will be used for.

 The factors that go into determining an item of information‟s valuation lend themselves

to relative interpretation. For example, whether an IO is old depends on the IO‟s age rela-

tive to that of other IOs. Whether moving an IO will free up much space depends on the
IO‟s size relative to that of other IOs.

Fuzzy logic [7] originated in 1965, with the publication of “Fuzzy Sets” by L.A. Zadeh of the

University of California, Berkeley, California [28]. Traditional sets typically are described using
a binary membership function, m, where a set S = {x | m(x) = 1}, i.e., m(x) = 1 means that x is a
member of the set and m(x) = 0 means that x is not a member of the set. An alternative way of
expressing the traditional set S is as a pair, i.e., S=(U, m), where U is the universe over which the
set S can exist, and the function m determines the membership of any element, sU, in S. If
m(s)=1, then sS. If m(s)=0, then sS.

As an example, consider the set of all IOs in a Phoenix repository. The set BFT can be de-
fined as the traditional set of all IOs that have the type, BlueForceTrack. That is, for a repository
of IOs, R, BFT = (R, f(i)=(type(i) == BlueForceTrack)).

In contrast, consider defining all the sets of large IOs or old IOs. Although the size and age
of each IO is quantitative, the judgment of whether something is large or old is a relative, fuzzy
concept. These are not as well described by a traditional set, because of the traditional set‟s bi-
nary notion. For example, assume that the large set is defined as a traditional set over the un-
iverse of all IOs, with a membership function f(i) = (size(i) > 100). An IO of size 101 would be
in the set large, as would an IO of size 1000, and an IO of size 1,000,000. All of these IOs would
have the same membership in the set large, despite the orders of magnitude differences in their
sizes. Conversely, an IO of size 99 would not be in the set large, despite being much closer to the
IO of size 101 than the other elements in the large set.

Fuzzy sets capture fuzzy, relative valued memberships better than the traditional sets. A
fuzzy set is defined as a pair F=(U, m) like the traditional set, but the function m in a fuzzy set is
a function with a range in the interval [0,1], as shown in Figure 4. An element, sU, such that

Figure 4. Traditional set membership vs. fuzzy set membership.

1.0

0.0
x

m(x)
Traditional set

Fuzzy set

Membership
Function m(x)

Approved for Public Release; Distribution Unlimited.

 11

m(s)=0 still means that s is not a member of the set, i.e., sS. Any non-zero value for m(s) indi-
cates the degree to which s is a member of the set, with m(s)=1 meaning that s is fully in the set.

In our size example above, the IOs of size 101, 1000, and 1,000,000 would each have a
membership degree > 0 and  1, and the membership degree of the IO of size 1,000,000 would
be larger than that of the IO of size 1000, which in turn would be larger than that of the IO of
size 101.

In this way, a fuzzy set, F=(U, m), provides a partial order over its members.
Fuzzy logic is a technique for making decisions based on combining the members of multiple

fuzzy sets. It consists of the following three steps [26]:

 Acquiring a number of input values.
 Processing the inputs according to a set of fuzzy logic rules.
 Averaging and weighting the outputs of all the individual rules into a single output deci-

sion.

Fuzzy logic has been used in various applications. The subway system in Sendai, Japan uses
a fuzzy logic controller to control the subway train‟s acceleration, slowing, and braking to ensure

a smoother ride than position based controllers [12]. Fuzzy logic has also been used in air condi-
tioning and heating system controllers [1], rice cookers [27], industrial automation [8], 3D Ani-
mation software [19], and elevator controls [10], [20].

The International Electrotechnical Commision (IEC) standardized the Fuzzy Control Lan-

guage, FCL, in IEC 61131-7 in 1997 [11]. FCL enables the specification of fuzzy sets and “IF-
THEN” rules. There are several software tools and packages available that implement FCL, in-
cluding the following:

 jFuzzyLogic, http://jfuzzylogic.sourceforge.net/html/index.html.
 fuzzyTECH, by INFORM GmbH, http://www.fuzzytech.com/.
 The Free Fuzzy Logic Library (FFLL), http://ffll.sourceforge.net/.
 AwiFuzz, http://sourceforge.net/projects/awifuzz/.
 MATLAB‟s FuzzyLogic Toolbox, http://www.mathworks.com/products/fuzzylogic/.

3.7 Experimental methodology

As part of the VFILM project, we developed a set of metrics and conducted experiments to col-
lect the metrics, described in detail in the VFILM Experiment Plan [15]. Our experimental me-
thodology was the following:

 We developed metrics evaluating both the functionality and the performance of the
VFILM prototype.

 We authored the experiments as JUnit tests so that they can be used for regression testing
the software.

 Functional experiments contain assertions that fail on unexpected or incorrect results.
 Performance tests output logs and have scripts to extract relevant results into Comma Se-

parated Value (CSV) files.
 In those experiments in which a baseline of comparison is needed, VFILM is compared

against a baseline of the Phoenix Core Services with no information lifecycle manage-
ment.

Approved for Public Release; Distribution Unlimited.

 12

3.7.1 VFILM Metrics

Table 1 contains the functional metrics that we defined and gathered. These metrics answer the
following questions about the correctness of the VFILM prototype system:

 Can the VFILM prototype system perform information valuation and movement in re-
sponse to events (i.e., mission, system, and ILM events)?

 Can the VFILM prototype system maintain a threshold of desired space in the level 0 sto-
rage?

 Do archive and query operations have correct behavior when performed with Phoenix
services using VFILM prototype functionality?

Table 1. Functional Metrics Defined for VFILM

No. Description Measured Value, Units

F1 Responsiveness to
events

Valuation and movement trig-
gered by appropriate events

Yes/No

F2 Repository mainten-
ance

Free space in level 0 store over
the course of the experiment

% available graphed against
time and threshold being main-
tained

F3 Correctness of arc-
hive operations

Publications with the archive bit
set on baseline and VFILM code

The number of IOs from the
published set that are in the arc-
hive at the end of the experi-
ment in the baseline and expe-
rimental VFILM cases

F4 Correctness of query
operations

Query operations on baseline
and VFILM code

The number of IOs from the
published set that are returned
by the baseline and VFILM cas-
es

Table 2 shows the performance metrics that we defined and gathered for VFILM. They ad-

dress the following questions about the performance of VFILM:

 How does the valuation function, VDF, scale?
 How does the HSM movement of information scale?
 What overhead, if any, does VFILM introduce on the baseline Phoenix archive and query

operations?
 What is the cost associated with the increased flexibility of the VFILM mission-driven

information valuation and lifecycle management?

Approved for Public Release; Distribution Unlimited.

 13

Table 2. Performance Metrics Defined for VFILM

No. Description Measured Value, Units

P1 VDF scalability Time to execute the VDF on a
variety of repository configura-
tions

Execution time of the VDF

P2 HSM scalability Time to execute the HSM move
operation on a variety of reposi-
tory configurations

Execution time of the HSM
move operation

P3 Performance of arc-
hive operation

Time from the start of publica-
tion to the last archive operation
on baseline and VFILM code

Comparison of time to archive
completion in the baseline and
VFILM cases.

P4 Performance of
query operation

Time to return query results on
baseline and VFILM code

Comparison of the time to return
all results in the baseline and
VFILM cases.

P5 VDF execution time Time to perform valuation using
the current VDF and using a
single-factor function.

Comparison of the time to ex-
ecute the two valuation func-
tions.

3.7.2 Experiment Definitions

To evaluate the metrics described in Section 3.7.1, we defined seven experiments with the fol-
lowing hypotheses:

1. ILM Responsive to Events – ILM valuation and HSM movement can be triggered by
Phoenix and system events.

2. Maintain Level 0 Store – The ILM can maintain a specific amount of free space in Level
0 store.

3. Correctness – The results of archive and query operations on Phoenix with the VFILM
prototype software will differ from the results of the baseline Phoenix operations only in
the latency.

4. Scalability (VDF) – The time to evaluate objects increases linearly with the number of
objects in the evaluation set.

5. Scalability (HSM) – The time for the HSM adapter to move IOs increases no worse than
linearly with the number of objects moved and the total amount of bytes moved.

6. Performance – The time to execute archive and query operations should be largely unaf-
fected by the presence of ILM functionality, except for the effects of retrieval from non-
level 0 store.

7. Cost of Valuation Flexibility – The cost of using a Fuzzy Control Logic based valuation
function is not prohibitively higher than the cost of some simple function, specifically IO
age.

Approved for Public Release; Distribution Unlimited.

 14

3.7.3 Experiment Infrastructure

All of the experiments were carried out on two specific computers.
The experiments for metrics P1, P2, P3, and P4 were run on a computer with a 1.7 GHz

Quad-Core AMD Opteron(tm) Processor 2344 HE and 8GB memory.
The experiments for metrics F1, F2, F3, F4, and P5 were run on a computer with a 2.00 GHz

8-core Intel(R) Xeon(R) CPU E5405 and 4GB memory.

Approved for Public Release; Distribution Unlimited.

 15

4.0 RESULTS AND DISCUSSION

The VFILM project produced the following significant research and development results:
A novel approach to information lifecycle management. Our approach to information valua-

tion and movement based on fuzzy logic has several advantages over existing approaches, in-
cluding the following:

 Multiple, non-traditional factors can be considered in valuing information urgency, in-
cluding but not limited to mission factors, relation to other information, and information
characteristics. The factors can differ between sets of information and the set of factors is
extensible.

 It supports dynamic, event-driven information movement. The movement of information,
and how much storage is needed, is not static. It can change based on the number and
types of missions that are going on, and the nature of the information in the databases.
Furthermore, the VFILM system supports mission, system, policy, and other relevant
events through an easily extendable event-handler implementation.

 It avoids thrashing around fixed storage thresholds or drastic purges of information to
free up storage. VFILM separates the information valuation and information movement
functions, and treats information valuation as a partial order of the “criticality” of infor-
mation. Each can be scheduled when needed or when resources are available, and can be
executed as much as needed, e.g., to recover just enough space to continue.

 It provides a rich framework for specifying information valuation factors and policies for
valuing and moving information. New Fuzzy Control Language rules, fuzzy sets, poli-
cies, groups, and thresholds are readily added or changed so that the VFILM system can
be configured for many situations and uses.

 It can treat groups of information that are related collectively, so that they are valued and
moved as a group, when appropriate.

A VFILM Architecture. We specified and documented an architecture for providing value-
based information lifecycle management in the context of information management services. The
architecture, which is described in Section 4.1, identifies the components that make up value-
based information lifecycle functionality and their roles.

An ILM Service Design and Prototype Implementation. We designed an ILM service that
works with AFRL‟s Phoenix IM services and implemented a software prototype, as described in

Sections 4.2 and 4.3. The VFILM ILM service design and prototype provide the following sig-
nificant features:

 Works with the existing Phoenix Repository and Query services (with minimal changes),
and with multiple repositories spread over multiple storage levels.

 Separates information valuation and movement functions, and is extensible to specifying
and modifying the factors that affect information valuation.

 Triggers information valuation and movement in response to events. The prototype works
with Phoenix Events that specify changes in mission status, policy changes, and moni-
tored system events. The ILM service is extensible to specify additional triggering events
and event handlers.

 Supports groups of information that can be valued and moved collectively. Groups can
overlap and can be based on any indexable information properties, such as type, source,
mission, or location.

Approved for Public Release; Distribution Unlimited.

 16

 Configurable and policy-driven, with the ability to specify information valuation rules,
storage levels and thresholds, group membership, triggering events and event handlers,
priorities, and precedence.

The prototype ILM service provides both a functional ILM functionality for Phoenix IM ser-
vices and the Berkeley XML database, and a basis for more comprehensive and richer ILM func-
tionality.

Demonstration and Evaluation of VFILM Capabilities. We provided a set of demonstra-
tions of VFILM functionality and documentation to build and execute the demonstrations, de-
scribed in Section 4.4. These include Graphical User Interfaces (GUIs) and demonstration
clients. We also conducted a set of experiments collecting functional and performance metrics
about the VFILM prototype, described in Section 4.5. The experiments are implemented as JUnit
tests so that they can serve as a regression test suite for the software.

4.1 VFILM Architecture

ILM for Air Force enterprise and tactical environments requires a mission-driven, flexible, and
intelligent ILM service for deciding when information should move between levels, what infor-
mation should move, and for managing the following aspects of the information lifecycle:

 The value of information and the factors that can contribute to an increase or decrease in
information value. Most ILM and HSM approaches available rely on recentness or fre-
quency of information access to determine where information should reside [2]. This is
insufficient in military situations because it ignores the inherent value of information and
its criticality to ongoing operations. The access patterns of an IO contribute to its value,
but are not the only factors. Mission-related information can be of higher or lower value
based on its urgency to a mission and how rapidly it must be provided if accessed (neces-
sitating its availability in local store).

 The grouping of information, so that related information can be moved and/or retrieved
together when appropriate. Traditional ILM and HSM focus on files and documents, an
80% solution appropriate for most business needs. VFILM supports a richer organization
of information, including instances of Phoenix Information classes and grouping related
and derivative information, e.g., based on association with a mission, sortie, or platform;
common attributes (e.g., age); and other aspects.

 The triggers of information movement, which for existing HSM solutions are generally
limited to when space becomes needed or specific scheduled times. This is not sufficient
for USAF needs because when space is reaching capacity might be exactly when addi-
tional space is most needed by the mission and might be when the time and resources
needed to move information to free up space are least available. We utilize a rich set of
triggers to invoke the ILM to decide whether information should be moved, how much,
and when, including the need for space, events such as mission epochs, and proactively
when the ILM and HSM functions would not impact mission operations.

The view that ILM and HSM are management services, not simply a process with an HSM
mechanism, matches the service-oriented and active management organization of AFRL IM
thrusts. This facilitates a mostly automated technical solution rather than an expensive business
process provided by a specific vendor, and supports various HSM solutions.

The VFILM architecture, shown in Figure 5, consists of an ILM service that assesses infor-
mation value based on urgency to current mission needs, invokes information movement when

Approved for Public Release; Distribution Unlimited.

 17

Figure 5. The VFILM architecture.

Mission

Domain

Model

ILM Service

Triggers

HSM Service

Move and
retrieve
files

Timer
events

System, Env.
Events

Move

information

Assess
information
valuePolicy

Rules

95% full

Mission
Events

Level 0

store

Level N

store

Level 2

store

Level 1

store

Hierarchical

Storage

Levels

Information
groupings and
dependencies

Lookup

policy

needed, and controls an HSM service that moves information between hierarchical storage le-
vels. It consists of the following core architectural elements:

 The ILM service, which decides when and what information should be moved.
 A value depreciation function that determines how information value changes in urgency,

criticality, or importance.
 Events that serve as triggers for information valuation and movement. These include mis-

sion events such as the start and end of mission operations, system events such as memory
exhaustion, and timer events such as a garbage collection timeout.

 Mission domain models that map mission events to ILM operations.
 Policy governing information movement and retention, thresholds on storage limits, and

how groups are treated.
 Grouping that captures information relationships and mission dependencies and enables

information to be moved or retained collectively.
 The hierarchical storage levels of storage media in which information can reside, includ-

ing level 0, the local disk where the IO repository resides, and backing store (levels 1+).
 An HSM service that performs information movement and retrieval.

4.2 VFILM Prototype Design

In addition to defining the VFILM architecture, we also designed and implemented a prototype
of the VFILM ILM service and VDF algorithm. The ILM design and prototype implementation
that we developed includes enough functionality for other components of the architecture to
make the ILM functional and useful in the AFRL Phoenix IM context, but full instantiations of a

Approved for Public Release; Distribution Unlimited.

 18

Mission Domain Modeling component and an HSM Service were determined to be out of scope
for this project. We investigated a number of HSM services, as described in Section 3.5, and
could find no existing HSMs that were mature, accessible, supported, platform-independent, and
cost-effective enough to utilize, so we prototyped a representative set of HSM capabilities for
moving information objects between hierarchical storage levels.

Table 3 lists the architectural elements from Section 4.1, summarizes their design within the
ILM service, and the section in which they are described.

Table 3. Design of prototyped VFILM components.

VFILM Architecture Element Prototype Design Section Described

ILM Service A new service optionally deployed with
Phoenix IM services. 4.2.1

Events

The Event Manager component of the
ILM service and pluggable event han-
dlers, with sets of defined ILM events,
mission events, and a file system monitor
for system events.

4.2.2

Mission Domain Model The Default Mission Domain Model
Event Handler. 4.2.3

VDF Fuzzy logic based algorithm within the
ILM service. 4.2.5

Grouping The Group Manager component of the
ILM service. 4.2.6

Policy Event handlers, fuzzy logic rules, and
configuration files. 4.2.7

HSM Service ILM-HSM adapter and simulated HSM
functionality. 4.2.8

4.2.1 Design of the ILM Service

The design of the prototype ILM service that we developed is shown in Figure 6 and consists of
the following components:

 The ILM Event Manager manages event handlers that create ILM events in response to
Phoenix events and other inputs.

 The ILM Controller drives the behavior of the ILM in response to ILM Events.
 The Value Depreciation Function evaluates information objects using a specified policy.
 The Group Manager maintains the definitions of groups of information.
 The ILM-HSM Adapter abstracts away the specifics of the HSM and Phoenix Reposito-

ries being used.

Approved for Public Release; Distribution Unlimited.

 19

Figure 6. Design of the ILM Service.

HSM and Repository

Services

ILM-HSM

Adapter

ILM

Controller

Value

Depreciation

Function

ILM Event

Manager

Event Source

Phoenix events

ILM events

Access IOs

Trigger HSMUpdate Value Function

Group

Manager

IO group status

Group

membership

Evaluate

IOs

4.2.2 Design of the ILM Event Manager

As shown in Figure 7, the ILM Event Manager maintains a set of Event Handlers, each of which
receives incoming higher level events and maps them to ILM events understood by the ILM
Controller. The Event Handlers are pluggable. We prototyped a set, but additional ones can be
provided at configuration-time or at runtime (see the Policy Event Handler below).

Generated events and discrete epochs, such as mission events and policy events, are
represented as Phoenix events and delivered using Phoenix Event Channels. The consumer of the
Phoenix Events is the Event Manager that selects the appropriate event handler to use for each
event, based on the event type. Continuous conditions, such as the amount of free storage, can be
monitored directly by event handlers.

Each event handler maps the incoming or monitored higher-level events to a set of ILM
events, and the set of ILM events is passed to the ILM controller for execution.

All of the ILM actions are driven by a set of ILM events that serve as the “language” of the

ILM and trigger the ILM to conduct information valuation, information movement, group up-
dates, and/or policy modification. The following is the set of prototyped ILM events:

 NeedSpace – Indicates that a particular amount of space should be made available
through the movement of information.

 Cleanup – Check the relative valuation of information across the hierarchical levels and
rebalance the location of information, so that the most critical information (lowest depre-
ciation valuation) is in level 0 store and less critical information (highest depreciation
valuation) is in higher storage levels.

Approved for Public Release; Distribution Unlimited.

 20

Figure 7. Design of the ILM Event Manager.

●●●

Phoenix

Events

Mission eventsSystem events Policy events Other events

Phoenix

Event Channel

Event

Mapper

Pluggable

Event

Handlers

System

Event

Handler Mission

Event

Handler

<X>

Event

Handler

Policy

Event

Handler

Phoenix Events

ILM

Controller

ILM Events

Monitoring
of System
Events

 UpdateThreshold – Change the threshold of space that the ILM should maintain available
in level 0 storage.

 Valuation – Execute the VDF valuation function on a set of information (provided as a
parameter) to determine the information valuation.

 GroupUpdate – Create a new group or change the attributes of a group of information ob-
jects.

 RuleChange – Add or change a fuzzy logic rule determining the valuation of information
objects.

 MoveIOs – Move a set of information objects from one repository to another (usually in
different storage levels).

The VFILM prototype provides the following five Event Handlers:

 Default Mission Domain – Reacts to incoming Mission Events, described in more detail
in Section 4.2.3.

 File System Monitor – Monitors the level of free space and triggers a Need Space event
when the available space drops below a specified threshold, as shown in Figure 7.

Approved for Public Release; Distribution Unlimited.

 21

 ISQM Listener – Implements the ISQM Listener Interface used with the Quality of Ser-
vice (QoS) Enabled Dissemination (QED) prototype [17] to receive policies associated
with groups of information (e.g., missions or information types).

 Policy Handler – Provides ILM administration, such as setting the free space threshold or
inserting new Event Handlers.

 Location Manager – An Event Handler created for the VFILM demonstration. It sub-
scribes to track data published by moving clients and triggers group and valuation events
as the location of the client changes. Described in more detail in Section 4.4.

4.2.3 Design of the Mission Domain Model

The prototype Mission Domain Model for VFILM is provided by the Mission Domain Model
Event Handler, the set of mission events that we defined for the VFILM prototype, and the map-
ping to ILM events. We defined the following Mission Event Types for the VFILM prototype:

 MissionPrep – Indicating that a planned mission will start sometime in the future and the
ILM should prepare for it.

 MissionBegin – Indicating the start of a mission.
 MissionEnd – Indicating the end of a mission.
The Mission Domain Model Event Handler maps these three Mission Event Types to the

ILM Events indicated in Table 4.

Table 4. Mission Events and mapping to ILM Events representing the prototype VFILM

Mission Domain Model.

Mission Event Type ILM Events Resulting ILM operations

MissionPrep Cleanup

Runs the valuation function on multiple storage le-
vels and sorts the results so that the IOs are ba-
lanced across the storage levels according to their
valuation and the storage thresholds.

MissionBegin

GroupUpdate Creates a group representing the mission.

Valuation Triggers valuation of all IOs matching the mission
predicate.

NeedSpace Moves IOs to free up enough available space for
the mission.

MissionEnd
GroupUpdate Removes the group associated with the mission.

Valuation Triggers valuation of all IOs associated with the
mission, i.e., matching the mission predicate.

4.2.4 Design of the ILM Controller

The ILM Controller receives ILM Events from the Event Handlers and invokes valuation,
movement, or update functions as indicated in Table 5.

Approved for Public Release; Distribution Unlimited.

 22

Table 5. ILM Events implemented by the ILM Controller and their evaluation.

ILM Event Parameter Description of algorithm

NeedSpace Amount of space X Move IOs until there is X amount of space in level 0

Cleanup Amount of space X Sort IOs into storage levels by their valuation, leav-
ing threshold + X bytes of free storage in level 0

UpdateThreshold Threshold X Change the threshold value the ILM maintains in
level 0 to the value X

Valuation Information set X Invoke VDF on the IOs in X

GroupUpdate Group context X Update the context associated with a group
RuleChange Evaluation rule X Add X to the set of evaluation rules
MoveIOs src, dest, # IOs X Move X IOs from src repository to dest repository

4.2.5 Design of the Value Depreciation Function

The Value Depreciation Function determines whether an information object‟s usefulness (or val-
ue) has depreciated enough to move from level 0 store to backing store or, conversely, whether it
has appreciated and therefore needs to be retrieved from backing store and re-inserted into level
0 store.

Whether information should be moved out of level 0 store comes down to a difficult to quan-
tify predictive measure, i.e., whether the information will be needed soon (or ever). Furthermore,
it is a relative assessment, i.e., whether the space in level 0 store occupied by an IO X is best used
for X or a different IO, or left available for future information. Furthermore, there can be mul-
tiple factors that go into deciding the relative worth of information objects, including the mis-
sions or operations that they are being used in (indicating how relevant they are to ongoing oper-
ations), the age of the IOs (indicating how fresh the information is), and the size of the IOs (indi-
cating how much space they are using). Each of these factors has relative interpretation. That is,
whether an item of information is relevant enough to keep, or large or old enough to move is rel-
ative to other items of information and to the anticipated use of the space if the information ob-
ject is moved. Any discrete or static threshold for any of these factors will lead to inflexibility,
i.e., it is likely to only be suitable in specific situations and not sufficient in others, and potential
thrashing.

Therefore, VFILM takes the approach of building a partial order of information valuation so
that at any time when information needs to be moved to make room in level 0, the information
that is most depreciated in value relative to the others will be moved.

We use a fuzzy logic rule based approach to produce the partial order from relative valued in-
puts. As shown in Figure 8, information factors such as mission relevance, age, and size are ex-
pressed as fuzzy input sets. Figure 8 shows three fuzzy inputs, clockwise from lower left corres-
ponding to age, mission relevance, and size. Each of these fuzzy inputs consists of multiple sets,
e.g., age consists of a Young and an Old fuzzy set. The x axis represents the measured value of
the input, e.g., the age of an IO calculated from the current time and a creation timestamp, and
the y axis represents the degree of membership in a particular fuzzy set.

Figure 8 also shows that a set of fuzzy logic rules specifies how to combine these inputs into
a degree of membership in an output set, Move. The degree of membership in the Move set de-
fines the partial order of information valuation. When space is needed, the IOs with the highest
degree of membership in Move are the ones chosen to be moved.

Approved for Public Release; Distribution Unlimited.

 23

Figure 8. The combination of fuzzy input sets into relative membership in a Move

set using fuzzy logic rules.

Small

Size (bytes)

1.0

0.0

Med. Large

Young

Age

1.0

0.0

Old

Past

Relevant to mission

1.0

0.0

Current Future

1.0

0.0

Move

Figure 9. Information organized in-

to many groupings, some of which

have associated lifecycles.

Mission A

Sortie Sortie

Sortie

Platform
BFTs

ISR

ISR for
Mission A

BFTs for
Mission A

This design offers a tremendous amount of flexibility and extensibility in the VDF. New fac-
tors can be added to the valuation by introducing a new fuzzy input set. The rules for combining
the fuzzy inputs into the output measure can be extended. Finally the various input factors can be
weighted so that some factors contribute more to the output set than others.

The design of the VDF ILM component consists of the following pieces:

 Fuzzy sets representing the inputs and output of the VDF function.
 Fuzzy logic rules that combine the inputs into a degree of membership in the output set.
 Functions that access the values for the fuzzy

inputs, which can be stored in information
metadata, Phoenix Context objects, system
condition monitors, operating system
attributes, etc.

The implementation of the VDF component and
these pieces are described in Section 4.3.6.

4.2.6 Design of the Group Manager

In many cases, IOs are not independent entities and
there are significant advantages to having the ILM
exploit the interdependencies. One realization of in-
formation interdependencies is association with a
common group. As shown in Figure 9, information
in a system can be associated with many overlapping

Approved for Public Release; Distribution Unlimited.

 24

Figure 10. The Group Context

contains the information needed

to represent a group of IOs.

Group Context

Predicate

Stored Values

Valuation Rule

Precedence

Group Identifier

and co-existing groups, based on shared types (e.g., blue

force tracks, BFTs), source (e.g., a specific platform),
role (e.g., intelligence, surveillance, and reconnaissance,
ISR, for mission A), epoch (e.g., a sortie), location within
a particular region, and so forth. VFILM supports the as-
sociation of IOs that are related and that should be treated
collectively into groups. Events can affect a group of IOs
and IOs can be collectively valued and moved.

Groups are defined using predicates over observable
attributes, such as IO type, metadata, or attributes on con-
texts. We defined a new Group Context, shown in Figure
10, to hold the following information about a group:

 Identifier – A name to identify the group.
 Predicate – A predicate defining the IOs in the

group. The predicate is defined over fields in me-
tadata, contexts, or other information derived
from an IO.

 Valuation rules – The set of rules that is used to
evaluate the IOs in the group.

 Precedence – Used to determine which group definition is used during IO valuation when
an IO is part of multiple groups.

 Stored values – Input values associated with a group and used during IO valuation.
The Group Manager maintains the collection of Group Contexts. Missions are represented as

just another type of group. When a Mission Start event occurs, a Group Context is created for
IOs associated with the mission.

4.2.7 Design of VFILM Policy

There are a number of VFILM elements that collectively make up the VFILM policy governing
information valuation, movement, and attributes affecting the configuration of the system and the
factors that go into information valuation and movement.

An explicit element of policy that we added is support for QED-like policy. QED is another
project that BBN led that created policy-driven QoS management for Phoenix and includes a pol-
icy language for specifying mission- and client-driven QoS policies [17]. The VFILM prototype
design includes a QED-like policy handler, which receives policies of the form

Policy : f(o,m)  v, i, P;

Where o is the operation to which the policy pertains, m is observable attributes of informa-
tion, v is the precedence, i is an importance, and P represents a set of preferences.

Whereas QED supports multiple IM operations (o), VFILM is only concerned with the query
operation. The condition element, m, can include attributes of information such as its type, or
other attributes that can be indexed. The precedence, v, maps to the Precedence stored in the
Group Context and used to deconflict multiple groups when performing valuation of IOs. The
importance, i, is a special group attribute that can be used as an input value to the fuzzy logic
valuation function. Importance is used, for example, to identify that one Mission group is more
important than another Mission group. The preferences, P, specify a set of name-value pairs. In

Approved for Public Release; Distribution Unlimited.

 25

the VFILM prototype P is not being utilized, however, the P name-value pairs could easily be
treated as attributes in the Group Context and their values, and used as inputs to the valuation
function.

Similar to reusing the QED policy in the VFILM context, we decided to use other existing
features to implement policy, rather than introducing a special purpose VFILM policy language.
This enabled us to maintain the VFILM services as transparent and non-intrusive to the Phoenix
services as possible, without introducing another interface (a policy language) that would need to
be learned to use the VFILM prototype. Therefore, VFILM policy is encapsulated in all of the
following:

 VDF Evaluation Rules that specify how information is valued.
 Group details stored in Group Contexts and specified in QED-like policy.
 Storage thresholds provided via configuration files and policy events.
 ILM Event triggers, including the Mission Domain Model, File System Monitor, and oth-

er Event Handlers.

4.2.8 Design of the ILM-HSM Adapter

The ILM-HSM Adapter is a control interface from the ILM to HSM functionality that is intended
to support a variety of HSM implementation options. As such, it provides a consistent interface
for the ILM to specify IOs and files that should be moved independently of the specific HSM or
repository that is used. In a situation where a full HSM solution is not appropriate, the ILM-HSM
Adapter can be responsible for the movement of information. If the repository stores IOs as files
on disk this could involve moving the file and updating the repository‟s reference or leaving a

symbolic link to the file‟s new location. With other repository implementations where IOs are
stored in relational databases, such as with the PostGIS Repository, this could involve removing
the IO from one table and inserting it into another.

In situations where an HSM is used, the ILM-HSM adapter would serve as the interface to
the HSM. This will depend on the specifics of the HSM utilized but could involve assigning
priority values to managed files based upon information value or modifying a management poli-
cy.

The ILM-HSM Adapter also provides the ILM with access to IOs stored in the repository.
Since our investigation of off-the-shelf HSMs did not turn up anything suitable for our

VFILM prototype efforts (as described in Section 3.5), we simulated HSM functionality within
the ILM-HSM Adapter. We designed it to take advantage of, and be consistent with, the Phoenix
use of the Berkeley DB. The ILM-HSM can handle multiple repositories, can move just IOs re-
taining metadata in the level 0 store, or move metadata and IOs to level 1 store.

The ILM-HSM Adapter maintains the following two extra databases on each level of storage
to facilitate information movement:

 A Value Store – Contains the IO context ID, IO value (i.e., the result of the most recent
valuation execution), and the storage level of the IO.

 An ILM Index – Maintains an index of the IOs in the level of storage indexed by the
fields used to define group membership allowing rapid lookup of IOs associated with a
group.

Approved for Public Release; Distribution Unlimited.

 26

Figure 11. Design of the ILM-HSM Adapter.

ILM
Controller

Repository
Service

ILM-HSM
Adapter 1

Berkeley
Repository 1

Metadata DB

IO Payloads

Berkeley
Repository 2

ILM-HSM
Adapter 2

Level 0 File

System Monitor

Metadata DB

IO Payloads

ILM Index 2

Value Store 2

Level 0 Store

Level 1 Store

Event
Manager

ILM Index 1

Value Store 1

Each type of repository has a corresponding ILM-HSM Adapter type, and each repository in-

stance has an ILM-HSM Adapter instance of the corresponding type, as shown in Figure 11. The
ILM-HSM Adapter provides multiple options for moving IOs. The first option moves the IOs
only, retaining the metadata in level 0 store, so that the Phoenix Query Service works the same
as before. That is, it matches the metadata in the Metadata DB and follows the pointer to retrieve
the matched IO, where the IO might be in level 0 or in level 1 store.

The ILM-HSM Adapter design for moving IO files only (no metadata) from level 0 to level 1
is shown in Figure 12 and works as follows:

 When an IO should be moved, the ILM-HSM adapter physically moves the IO‟s file from

the Level 0 filesystem to the Level 1 filesystem, placing the IO under HSM control.
 The ILM-HSM adapter then updates the file reference for the IO in the MDDB to reflect

the new location.

Because retaining all of the metadata in level 0 store can still lead to the level 0 store filling up,
the ILM-HSM Adapter can also move metadata and IOs together. As shown in Figure 13, the
movement of IOs only and the movement of metadata and IOs together can coexist.

Approved for Public Release; Distribution Unlimited.

 27

Figure 13. The ILM-HSM can move metadata and IOs to-

gether from level 0 to level 1.

ILM
Controller

Repository
Service

ILM-HSM
Adapter 1

Berkeley
Repository 1

Metadata DB

IO Payloads

IO Payloads

Berkeley
Repository 2

ILM-HSM
Adapter 2

Level 0 File

System Monitor

Metadata DB

IO Payloads

ILM Index 2

Value Store 2

Level 0 Store

Level 1 Store

Event
Manager

Move
IO

ILM Index 1

Value Store 1

Move
Metadata
& IO

Figure 12. The ILM-HSM can move IOs from level 0 to level

1, retaining the metadata in level 0 with updated references to

IOs in level 1.

ILM
Controller

Repository
Service

ILM-HSM
Adapter

Berkeley
Repository

Metadata DB

IO Payloads

IO Payloads

Level 0 File

System Monitor

Level 0 Store

Level 1 Store

Event
Manager

ILM Index 1

Value Store 1

Move
IO file

Update
reference

Approved for Public Release; Distribution Unlimited.

 28

4.3 VFILM Prototype Implementation

The VFILM prototype implements an ILM Service, consisting of an Event Manager, Controller,
Group Manager, ILM-HSM Adapter, and Value Depreciation Function, as shown in Figure 6 and
described in Table 3. The following sections describe the implementation of each component.

In addition, we made minor changes to the Repository Service and Berkeley Repository to
support the prototype implementation. These are described in Sections 4.3.2 and 4.3.3.

4.3.1 Prototype Implementation of the ILM Service

The ILM Service (mil.af.rl.phoenix.ilm.service.ILMService) extends the Phoenix Base
Channel Service (mil.af.rl.phoenix.channel.service.BaseChannelService) and imple-
ments the ILM Service Interface (mil.af.rl.phoenix.ilm.service.ILMServiceInterface).
Its only constructor argument is an ILM Service Context, which extends Service Context and
implements the ILM Service Context Interface.

The ILM Service Context includes the following:

 Internal ILM Components
o The Value Depreciation Function
o The ILM Controller
o The ILM Event Manager
o The Group Manager
o Optional GUIs

 External Phoenix Services
o A reference or connector to the Event Notification Service (or appropriate con-

nector)
o Channel context for incoming events from the Event Notification Service
o A reference or connector to the ILM Compatible Repository Service

All ILM-HSM Adapters are stored in a mapping (Map<String, AdapterInterface> adap-
terMap) of repository names to the appropriate ILM-HSM Adapter. Each adapter manages its
own ILM Index and Value Store.

When the ILM Service connects to an ILM Compatible Repository Service, it retrieves a
mapping (Map<String, BaseContextInterface> repositoryContextMap) from repository
UIDs (as defined by the Repository Service) to RepositoryContexts. The appropriate adapter is
then created for each repository context (if possible) via a call to

public void addRepository(ILMRepositoryContext repoContext, String repoUID)

and added to the adapter map. Currently only Berkeley Repositories are supported via the Berke-
ley Repository Adapter mil.af.rl.phoenix.ilm.adapter.BerkeleyRepoAdapter.

The ILM Service also registers an incoming Event channel with the Event Notification Ser-
vice. ILM Event Handlers can register subscriptions for specific event types via a call to the ILM
Service‟s

void registerEventType(String eventType)

Incoming events are received by an extension of a Timer Based Buffer
(mil.af.rl.phoenix.ilm.service.ILMTimerBasedBuffer) and are passed to the Event Man-
ager via a method call to

void process(EventInterface phoenixEvent)

Approved for Public Release; Distribution Unlimited.

 29

4.3.2 Modifications to the Repository Service

In order to manage IOs located within repositories, the ILM Service needs additional access to
the Repository Service beyond that provided by the baseline Phoenix implementation. For this
reason, we created the ILM Compatible Repository Service
(mil.af.rl.phoenix.repository.service.ILMCompatibleRepositoryService). This ser-
vice extends the baseline Phoenix Repository Service and implements the ILM Compatible Re-
pository Service Interface (mil.af.rl.phoenix.repository.service.ILMCompatible-
RepositoryServiceInterface).

4.3.2.1 ILM Compatible Repository Service

We added the following six methods as an extension to the Repository Service.
public Map<String, BaseContextInterface> getRepositoryContextMap()

Returns a map containing the UID and context of each repository instance the Repository Service
is managing. This is used for configuring an ILM-HSM adapter for each repository.

public long moveIO(String repositoryUID, String informationContextId, int

targetStore)

Moves the IO specified by informationContextId in the repository specified by reposito-
ryUID to the target storage level targetStore. Returns the number of bytes moved or -1 in case
of error.

public InformationInterface[] getIO(String repositoryUID, List<String>

ioContextIdList)

Retrieves the IOs specified by context ID from a specific repository.
public void insertInformation(String repositoryUID, InformationInterface[]

informationArray)

Inserts the provided IOs into the specified repository.
public void deleteInformation(String repositoryUID, List<String>

informationContextIdList)

Removes the specified IOs from the specified repository.
public void setILMNewInformationChannel(String repositoryUID,

ChannelContextInterface channelContext)

Configures an Information Channel for IOs inserted into the repository back to the ILM-HSM
Adapter.

4.3.2.2 Modifications to the Berkeley Repository

Additionally, we made several changes to the Berkeley Repository
(mil.af.rl.phoenix.repository.impl.BerkeleyRepository). Specifically, we changed in-
formationTable from HashMap<String, FileRepository> where the key was an Informa-
tion Type and the entry was a File Repository, to HashMap<String, List<FileRepository>>
where the key is still a information type, but now the entry is a list of File Repositories, with one
located on each storage level. Similarly, we changed File informationDir to List<File>
informationDirList with an information directory for each storage level.

Additionally, we added the necessary methods so that the BerkeleyRepository implemented
the ILM Repository Interface (mil.af.rl.phoenix.ilm.adapter.ILMRepositoryInterface).

Approved for Public Release; Distribution Unlimited.

 30

The ILM Repository Interface defines the methods necessary for a repository implementation to
be compatible with our implementation of the ILM-HSM Adapter. This interface consists of the
following methods:

public long moveIO(String contextId, int targetStore)

Moves the specified IO to the specified storage level, returns the number of bytes moved.
public List<File> getInformationDirList()

Returns the list of directories storing IOs.
public InformationInterface[] getIO(List<String> contextIdList)

Returns the IOs with the given Context IDs.
setILMNewInformationChannel

Configures an Information Channel between the repository and the ILM-HSM Adapter, this is
used for new IO‟s added to the repository so that the ILM can run the valuation function on them
and manage them.

public boolean isArchival();

Indicates if this repository instance is used primarily for archival purposes. See Section 4.3.2.5
for more details.

public void deleteIos(List<String> contextIdList);

Removes the specified IOs from this repository.
public int[] getMetadataStorageLevels();

Returns an integer array consisting of the levels on which this repository stores metadata (the
current implementation of the Berkeley Repository only stores metadata on one level and the re-
turned array will be of size 1).

public void setMetadataStorageLevels(int level[]);

Sets the levels on which this repository stores metadata, used for configuration purposes.
public int[] getPayloadStorageLevels();

Returns an array containing the levels on which this repository stores payload information.
public void setPayloadStorageLevels(int[] range);

Sets the levels on which this repository stores payload information, used for configuration pur-
poses.

4.3.2.3 Modifications to the File Repository

The BerkeleyRepository utilizes the FileRepository (mil.af.rl.phoenix.repository.impl
.FileRepository) for storing IO payloads on disk. We added the following method to the File
Repository implementation allowing IOs to easily be moved from one storage level to another.

public File moveInto(File oldLoc)

This method moves a File from its previous location into a directory managed by this File Repo-
sitory, updating the directory and file counts as it does. Note: The current implementation of this
method utilizes the Unix move command “mv” for the actual movement of the file. This call is

Approved for Public Release; Distribution Unlimited.

 31

likely not recognized by some operating systems, specifically MS Windows based platforms, and
would need to be updated for cross platform compatibility.

4.3.2.4 ILM Query Context

Storing information on multiple storage levels opens up more options for queries. For example, it
may be desirable to specify that a query should only be run over metadata on certain storage le-
vels, and that results should be returned from other locations. To accommodate this we created
an ILM Query Context (mil.af.rl.phoenix.query.ILMInformationQueryContext) which
extends the Phoenix Query Context (mil.af.rl.phoenix.query.InformationQueryContext).
The ILM Query Context contains a range of levels over which to query and a range of levels
from which to return results.

It is important to note that the ILM Query Context will act as a normal Query Context class if
the query is sent to a Repository that is not ILM Compatible. If a standard Query Context is sent
to an ILM Compatible Repository, it will execute and return results spanning all levels. This al-
lows us to achieve the desired functionality and remain compatible with baseline Phoenix im-
plementations.

Within the Berkeley Repository, we made changes to compare what storage level its metada-
ta is stored on before running the query, and then to check the where the payload of results are
stored before retrieving them.

4.3.2.5 Repository Instances for Archival Purposes

The VFILM Prototype is capable of utilizing multiple repositories located on multiple storage
levels for moving and managing IOs. However, the default behavior for the Phoenix Repository
Service is to insert new IOs into all repositories, which could potentially result in undesired data
replication. To prevent this with HSM repositories, we added an “isArchival” flag to the ILM

Repository Context. When a new IO is being added to the Repository Service, the Repository
Service will check if each repository instance uses an ILM Repository Context. If it does and the
ILM Repository Context has the “isArchival” flag set to true, the Repository Service will not
insert the IO into that repository. Instead IOs will be added to that repository via the ILM Ser-
vice.

4.3.3 Prototype Implementation of the ILM Event Manager

The ILM Event Manager (mil.af.rl.phoenix.ilm.eventmanager.EventManager) imple-
ments the Event Manager Interface (mil.af.rl.phoenix.ilm.eventmanager.Event-
ManagerInterface) and maintains a collection of ILM Event Handlers. The ILM Event Han-
dlers trigger ILM actions in response to external events such as a system event indicating a sto-
rage quota is exceeded, a Phoenix event indicating a new mission is beginning, or a policy
change.

One source of external events are incoming Phoenix Events. When a Phoenix event is re-
ceived, the event manager passes it to the appropriate event handler based on a mapping
(Map<String, List<IlmEventHandlerInterface>> handlerMap) of event type to lists of
handlers that can process that type of event. The event handlers then use the content of the Phoe-
nix Event to construct a list of ILM Events that are passed to the ILM Controller. For example, a
Mission Event could be passed to the Default Mission Domain Model, which in the case of a
mission start would trigger Group Update, Valuation, and Need Space events.

Approved for Public Release; Distribution Unlimited.

 32

Event Handlers are not limited to being triggered by Phoenix Events. For example, once in-
itialized, the FSMonitor spawns a thread that monitors a specific storage location. If the amount
of free space at that location drops below a certain threshold, the FSMonitor sends a NeedSpace
event to the ILM Controller.

4.3.4 Prototype ILM Event Handler Interface

The ILM Event Handler Interface (mil.af.rl.phoenix.ilm.eventmanager.IlmEvent-
HandlerInterface) provides the general framework for all ILM Event Handlers. The ILM
Event Handler Interface contains the following three methods:

public String getEventType()

Returns the type of Phoenix events this handler can process. This is used by the Event Manager
while building the handler map.

public void initialize()

This method is called when an Event Handler is being started. Some may spawn a thread or in-
itiate a connection. Others, such as the Default Mission Domain Model, register a new predicate
with the Event Notification Service so that the ILM Service receives Phoenix events of certain
types.

public void processEvent(EventInterface event)

The method called by the event manager when an incoming Phoenix event is received. This me-
thod can be empty for some event handlers. For example, the File System Monitor does not react
to incoming Phoenix Events, and only reacts to changes in system state.

The VFILM Prototype currently has six implemented ILM Event Handlers which provide for
a range of different ILM behaviors, these are described in the subsections below. Each section
indicates the Event Handler‟s implementation class, interface class, and the class that it extends.
Each section also indicates the implementation of the three methods described above, i.e., the
eventType, the behavior of the initialize method, and the behavior of the processEvent me-
thod.

4.3.4.1 File System Monitor

Implementation: mil.af.rl.phoenix.ilm.eventmanager.FSMonitor

Interface: mil.af.rl.phoenix.ilm.eventmanager.IlmEventHandlerInterface

 Java.lang.Runnable

Extends: mil.af.rl.phoenix.ilm.eventmanager.AbstractEventHandler

The File System Monitor implements the basic HSM functionality of monitoring available disk
space. It periodically checks the amount of free space available to a specific ILM-HSM Adapter
and compares the amount the storage thresholds set for that Adapter. If the amount of free space
drops below the specified threshold it triggers a NeedSpace event for that repository.

eventType: null

initialize: Spawns the thread which continuously monitors an adapter’s storage loca-

tion.

processEvent: The File System Monitor does not respond to Phoenix Events.

Approved for Public Release; Distribution Unlimited.

 33

Note: The implementation of the File System Monitor requires it to have access to the directories
in which a repository stores information.

4.3.4.2 Default Mission Domain Model

Interface: mil.af.rl.phoenix.ilm.eventmanager.IlmEventHandlerInterface

Implementation: mil.af.rl.phoenix.ilm.eventmanage.DefaultMissionDomainModel

Extends: mil.af.rl.phoenix.ilm.eventmanager.AbstractEventHandler

The Default Mission Domain model Subscribes to Phoenix Events of the type “Mission” which

can indicate a mission is being prepped for, starting, or ending, as shown in Table 6. Relevant
information such as the IOs that are related to the mission, the estimated amount of storage space
needed, and the mission importance are extracted from the Mission Event and used to create the
appropriate ILM Events including Group Update Events, Valuation Events, Cleanup Events, and
NeedSpace Events.

eventType: “Mission”

initialize: Subscribes the ILM Service to receive Phoenix Events of type “Mission”

processEvent: Triggers the specified ILM Actions. See Table 6 for details.

Table 6. The Mission Events in the Default Mission Domain Model

Mission

State

Description Triggered

ILM Events

Description of ILM Actions

MissionPrep Preparing for an
upcoming mission

Cleanup sorts IOs on level 0 and 1

MissionBegin Start of a mission GroupUpdate Creates a group matching the mission
predicate

Valuation Triggers valuation over all IOs match-
ing the mission predicate

NeedSpace Moves enough space for the mission
MissionEnd End of a mission GroupUpdate Removes the group associated with this

mission
Valuation Triggers valuation over all IOs that

matched the mission predicate

4.3.4.2.1 Mission Context

Extends the GroupContext (described in Section 4.3.7.1), along with other Group Details. It also
stores the Mission State and expected space needed.

Interface: mil.af.rl.phoenix.ilm.grouping.MissionContextInterface

Implementation: mil.af.rl.phoenix.ilm.groups.MissionContext

Extends: mil.af.rl.phoenix.ilm.groups.GroupContext

4.3.4.2.2 Mission Event

A Phoenix Event with an event type of “Mission” and a MissionContext as the body.

Approved for Public Release; Distribution Unlimited.

 34

Interface: mil.af.rl.phoenix.event.events.MissionEventInterface

Implementation: mil.af.rl.phoenix.event.events.MissionEvent

Extends: mil.af.rl.phoenix.event.events.Event

4.3.4.3 Policy Event Handler

Interface: mil.af.rl.phoenix.ilm.eventmanager.IlmEventHandlerInterface
Implementation: mil.af.rl.phoenix.ilm.eventmanager.PolicyEventHandler

Extends: mil.af.rl.phoenix.ilm.eventmanager.AbstractEventHandler

The Policy Event Handler Subscribes to Phoenix Events of the type “Policy” and provides a re-
mote administration interface to the ILM. Policy Events can be used to add/remove or update
event handlers, and remotely pass a list of ILM Events directly to the ILM Controller.

eventType: “ILM_Policy”

initialize: Subscribes the ILM Service to receive Phoenix Events of type “ILM_Policy”

processEvent: Updates the specified handler. If a Handler Name is specified and the

included Handler is null, it will delete the handler with the corresponding name.

Passes any included ILM Events to the controller.

4.3.4.3.1 ILM Policy Context

The ILM Policy Context (mil.af.rl.phoenix.ilm.groups.IlmPolicyContext) is the body
of ILM Policy events. It extends the Phoenix Base Context
(mil.af.rl.phoenix.contexts.BaseContext) and contains the fields specified in Table 7.

Table 7. Fields in the ILM Policy Context

Field Name Type Description

Handler Name String Name of the event handler to update
Event Handler IlmEventHandlerInterface New Event Handler (null means delete

the named handler)
ILM Events LinkedList<ILMEventInterface> List of ILM Events to directly hand to

controller

4.3.4.3.2 ILM Policy Event

A Phoenix event with type “ILM_Policy” and a body consisting of an ILMPolicyContext.

Interface: mil.af.rl.phoenix.event.events.IlmPolicyEventInterface

Implementation: mil.af.rl.phoenix.event.events.IlmPolicyEvent

Extends: mil.af.rl.phoenix.event.events.Event

4.3.4.4 ISQM Listener

Implementation: mil.af.rl.phoenix.ilm.eventmanager.ISQMListener

Interface: mil.af.rl.phoenix.ilm.eventmanager.IlmEventHandlerInterface

Approved for Public Release; Distribution Unlimited.

 35

 mil.af.rl.phoenix.ilm.mockqed.PolicyChangeListener

Extends: mil.af.rl.phoenix.ilm.eventmanager.AbstractEventHandler

The ISQM Listener connects to an ISQM service and translates QED style policies into ILM ac-
tions and groupings. Specifically, a QED policy is turned into a Group Context (described in
4.3.7.1) with Importance as a Stored Value. The ISQM Listener then issues a Group Update
event, containing the new group context. We use a MockISQM for demonstration purposes so
demonstration of VFILM does not depend on QED, and the current prototype requires the Mock-
ISQM Service to be collocated.

eventType: null

initialize: Registers the event handler as a listener with the ISQM Service

processEvent: ISQM Listener does not react to Phoenix Events

When the ISQM Service issues a policy update, it notifies all subscribers via a call to

public void policyChanged()

The ISQM Listener then retrieves a list of all policies from the ISQM Service. If a policy ap-
plies to QUERY operations, we assume that it should affect the valuation of IOs (because valua-
tion can affect query times based on IO storage location).

The policy is then translated into an appropriate ILM Group Context, which is then issued via
a Group Update Event and Valuation Event. Table 8 shows an example translation.

Table 8. An Example Translation from a QED Policy to an ILM Group Context.
Incoming QED Policy Resulting ILM Group Context

Policy Name #Valuation#BFT.policy Group ID QED#Valuation#BFT.policy
Conditions condition.operations=QUERY

condition.types =
com.bbn.report.blueforcetrack

Predicate /type=„com.bbn.report.blueforcetrack‟

Precedence 3 Precedence 3
Importance 4 Stored Values Importance = 4
Preferences Evaluation Rule QED_Policy_FCL

4.3.4.5 Location Manager

Interface: mil.af.rl.phoenix.ilm.eventmanager.IlmEventHandlerInterface

mil.af.rl.phoenix.ilm.CoordinateUpdatable

Implementation: mil.af.rl.phoenix.ilm.locationdemo.LocationManager

Extends: mil.af.rl.phoenix.ilm.eventmanager.AbstractEventHandler

The Location Manager is a demonstration component that subscribes to IOs published by a spe-
cific publisher containing positional data. It then issues ILM Events that highly value all other
IOs in the proximity of the tracked unit. We created the LocationManager mainly to demonstrate
the wide range of ILM behaviors we could achieve with minimal changes to the system as a

Approved for Public Release; Distribution Unlimited.

 36

whole. Because it relies on positional data being in a certain form, it is best suited for demonstra-
tions and inspiration for future event handlers.

eventType: null

initialize: Registers a predicate with the Information Brokering Service to receive

IOs from a given publisher. Spawns a Location Subscriber, which serves as the callback

for the registered predicate. The Location Subscriber passes the new coordinate infor-

mation from the IO subscription via the Coordinate Updatable Interface.

processEvent: Does not respond to Phoenix events.

4.3.5 Prototype Implementation of the ILM Controller

The ILM Controller (mil.af.rl.phoenix.ilm.controller.Controller) implements the ILM
Controller Interface (mil.af.rl.phoenix.ilm.controller.ControllerInterface). The ILM

Controller drives the behavior of the ILM in response to ILM Events. Currently there are seven
defined events which all ILM actions are composed of. ILM Events can be handed to the ILM
Controller as lists which will be executed in order, or as individual events. Multiple calls to the
ILM Controller may be executed out of order. If the order in which events are executed is impor-
tant, they must be passed to the ILM Controller in a list. For more details on ILM Events see
Section 4.2.4.

4.3.6 Prototype Implementation of the Value Depreciation Function

The Value Depreciation Function (mil.af.rl.phoenix.ilm.vdf.ValueDeprec-
iationFunction) implements the Value Depreciation Function Interface
(mil.af.rl.phoenix.ilm.vdf.ValueDepreciationFunctionInterface). It maintains a
mapping of evaluation rules (Map<String, EvaluationRuleInterface>) within a Value Depreciation
Function Context (mil.af.rl.phoenix.ilm.contexts.ValueDepreciationFunctionContext) and uses
these rules to calculate an IO's value. This rule mapping treats the key as an identifier for the
rule, and the entry is the rule itself. As described previously, group membership plays a large
role in the valuation process. An IO‟s Group Context includes a field with the name of the spe-
cific valuation rule to use (corresponding to an entry in this rule map) and a set of possible input
values to the valuation process.

IO valuations are carried out in batches asynchronously via an EvaluateTask

(mil.af.rl.phoenix.ilm.vdf.ValueDepreciationFunction.EvaluateTask). An Evaluate
Task accepts a list of IOs and a reference to an ILM Index containing the IOs. The Index is used
to first determine a given IO's group membership and then to update the IO's Index entry.

4.3.6.1 FCLRule

All evaluation rules implement the EvaluationRuleInterface
(mil.af.rl.phoenix.ilm.eventmanager.EvaluationRuleInterface). The VFILM proto-
type contains one such implementation, the FCLRule (mil.af.rl.phoenix.ilm.vdf.FCLRule),
which uses Fuzzy Control Logic to calculate Information values. Each FCLRule contains a
Fuzzy Inference System (FIS) and a mapping of fuzzy variables used for inputs, as shown in
Figure 14. We use jFuzzyLogic to implement the FCLRule. jFuzzyLogic is an open source Java
implementation of Fuzzy Control Logic available at http://jfuzzylogic.sourceforge.net.

Approved for Public Release; Distribution Unlimited.

 37

Figure 14. Layout of FCLRule

4.3.6.2 FIS

The FIS (fuzzy inference system) is a Java representation of an FCL program. It is created by
jFuzzyLogic from a FCL file. Input variables are specified by the method

setVariable(String variableName, double variableValue);

Once all the inputs have been specified a call to
evaluate()

runs the inference system. Lastly a call to
getVariable("move").defuzzify();

defuzzifies and returns a numeric value for the output variable “move”. This is the value we as-
sign as an IO‟s value. How we specify input variables is described in Section 4.3.6.3 below. The
specifics of an FCL file are described in Section 4.3.6.4.

4.3.6.3 Fuzzy Variables

A mapping of input names to fuzzy variables is used to determine the input set (Map<String,
FuzzyVariableInterface> variableMap). The keys in the map are the names of the input va-
riables, and each entry is a FuzzyVariable that returns the numeric value of the input. This value
can be calculated based on properties of the IO, such as age or size, or values stored in its Group
Context. The prototype implementations of VFILM‟s FuzzyVariables are described in Table 9.

Table 9. Fuzzy Variables prototyped in the VFILM prototype

Fuzzy Variable Description

IOSizeVariable returns an IO‟s payload size
AgeVariable returns an IO‟s age
MissionVariable returns a “Mission Importance” value for the IO‟s dominant group

Approved for Public Release; Distribution Unlimited.

 38

The fuzzy variable interface includes one method:
 public double calc(InformationInterface io, Map<String, Object> valueMap)

The value returned by this method will be the named variable‟s numeric input.

4.3.6.4 Fuzzy Control Logic

An FCL File contains one or more function blocks. Each function block specifies how values are
passed in, processed, and returned. This is specified by five distinct sections [11]:

 Input variables.
 Output variables.
 The fuzzification of numeric inputs into various fuzzy sets.
 The defuzzification of fuzzy sets into numeric outputs.
 Rules that define how to combine various sets.
The details of each section follow.

4.3.6.4.1 Input and Output variables

Input variables are specified by the keyword VAR_INPUT. For example,
//Defines the name of input variables

VAR_INPUT

 ioSize : REAL;

 missionStatus : REAL;

 age : REAL;

END_VAR

specifies that there are three input variables, ioSize, missionStatus, and age, and that each varia-
ble is a real number.

Similarly output variables are specified by the keyword VAR_OUTPUT.

//Defines the name of output variables.

VAR_OUTPUT

 move : REAL;

END_VAR

specifies that there is one real output named move.

4.3.6.4.2 Rule Block

The behavior of a fuzzy algorithm is defined in one or more rule blocks with each rule block
consisting of at least one rule. Suppose we want a rule that moves old, large, and irrelevant IOs.
Our FCL file could include the following rule block:

RULEBLOCK first

 // Use 'min' for 'and' (also implicit use 'max'

 // for 'or' to fulfill DeMorgan's Law)

 AND : MIN;

 // Use 'min' activation method

 ACT : MIN;

 // Use 'max' accumulation method

 ACCU : MAX;

RULE 1 : IF ioSize IS large

 AND ioAge IS old

 AND ioRelevance IS minimal

Approved for Public Release; Distribution Unlimited.

 39

(a) The functions f(x) and g(x). (b) MIN(f(x), g(x)) (c) PROD(f(x), g(x)

Figure 15. Graphical representations of the MIN and PROD activation methods.

f(x) = 0.5
g(x) = x

f(x) = 0.5
g(x) = x
MIN(f(x), g(x))

f(x) = 0.5
g(x) = x
f(x)*g(x)

 THEN move IS likely;

END_RULEBLOCK

The first line
RULEBLOCK first

assigns the name first to this rule block. The next line
 AND : MIN;

identifies the operator to use for an AND. The AND operator is clearly defined in binary logic.
With fuzzy logic, the values being logically combined using an AND will have values between 0
and 1 (inclusive), so the meaning of AND must be defined. In this case, we are simply taking the
minimum of the two values. Similarly, we are (implicitly) taking the max for an OR. The next
line

 ACT : MIN;

indicates the activation method. The activation method defines how the condition (the IF part of
a rule statement) affects the consequence (the THEN part of a rule statement). Two possible acti-
vation methods are MIN and PROD. MIN takes the minimum of the condition and the conse-
quence, while PROD takes the product of the condition and consequence.

To illustrate how the activation method works, consider the following rule
if f(x) then g(x);

In fuzzy logic, the result of this statement is g(x) affected by f(x) in the way specified by the acti-
vation method. This means that if the activation method is MIN, the result of the above rule is
MIN(f(x), g(x)). If the activation method is PROD, the result of the above rule is f(x)*g(x). This is
illustrated in Figure 15 for f(x)=0.5 and g(x)=x.

Notice that both of these activation methods work with binary sets. With binary logic f(x) = 0

or 1. If f(x) = 0, then MIN(f(x),g(x)) = PROD(f(x),g(x)) = 0. Likewise, if f(x) = 1, then
MIN(f(x),g(x)) = PROD(f(x),g(x)) = g(x). That is, if f(x) is false, the result is false, and if f(x) is
true, the result is the consequence g(x).

Approved for Public Release; Distribution Unlimited.

 40

Figure 16 shows the use of the MIN activation method in VFILM, for an example situation in
which the condition evaluates to a value of 0.5 and the consequence is move IS unlikely. The val-
ue of the condition (0.5) is the y axis value, 0.5, represented by the horizontal line in Figure 16.
The consequence (move IS unlikely) is the full unlikely set. Therefore, the minimum of the condi-
tion and the consequence is the subset of unlikely under the membership value 0.5, shown by the
shaded area in Figure 16.

Figure 16 Use of MIN for an activation method, where the condition has a value of 0.5, and

the consequence is move IS unlikely.

Figure 17 shows the same example, but using the PROD activation method. In this case, the

result set contains the values of the unlikely set, multiplied by 0.5, essentially halving the set. The
result is shown by the shaded area in Figure 17.

Figure 17. Use of PROD for an activation method, where the condition has a value of 0.5,

and the consequence is move IS unlikely.

Condition is 0.5

Move is unlikely set

Condition is 0.5

Move is unlikely set

Approved for Public Release; Distribution Unlimited.

 41

After that the accumulation method for each fuzzy set is defined.
 ACCU : MAX;

This is the method used when combining degrees of membership for the same set. For instance,
if we have a set that states move is in the likely set with a value 0.5, and another that states move
is in the likely set with a value of 0.75, we are deconflicting this by taking the max of the two.

Lastly, there are the listings of rules.
RULE 1 : IF ioSize IS large

 AND ioAge IS old

 AND ioRelevance IS minimal

 THEN move IS likely;

This rule calculates move’s membership in the likely set based upon size, age, and relevance.

IF ioSize IS large

Will be a value between 0 and 1 based upon ioSize‟s membership in large,
 AND ioAge IS old

The AND indicates we are using the minimum of the previous value and the number representing
ioAge‟s membership in old.

 AND ioRelevance IS minimal

The AND once again indicates we are using the minimum of the previous value and ioRelev-

ance’s membership in minimal.
 THEN move IS likely;

states that move will be in the set likely with a value resulting from the AND’s of the three condi-
tions.

The degrees of membership of ioSize, ioAge, and ioRelevance, are all calculated by the fuzzi-

fication process (described in Section 4.3.6.4.3, next). The output of multiple rules is calculated
via the defuzzification process (described in Section 4.3.6.4.4 below).

4.3.6.4.3 Fuzzification

As discussed previously descriptions such as small, medium, and large are not binary designa-
tion. Some things are very large, some are more medium, and others may be in between. To de-
termine how large an IO is, we fuzzify its size, and see how far inside of the large set it falls. This
is performed by the FCL FUZZIFY keyword, such as in the following code:

//Fuzzifies ioSize using a piece-wise linear function

FUZZIFY ioSize

 TERM small := (0,1)(100000,0);

 TERM large := (10000,0)(1000000,1);

END_FUZZIFY

The first line
FUZZIFY ioSize

indicates that the input variable ioSize will be fuzzified by this statement. The statement
TERM small := (0,1)(100000,0);

Approved for Public Release; Distribution Unlimited.

 42

defines the fuzzy set small and indicates where an IO lies within the set based on the IO‟s size

(specified by the variable ioSize). The first term of each parenthetical pair defines the bound of
the set, i.e.,

TERM small := (0,1)(100000,0);

says that IOs with a size between 0 and 100,000 bytes lie somewhere in the small set. The second
term of each parenthetical pair defines the membership value of elements in the set (i.e., where
each IO lies in the set. In other words,

TERM small := (0,1)(100000,0);

indicates that IOs that are 0 bytes in size are completely in the small set (i.e., have a membership
value of 1) and that IOs of size 100,000 bytes or more are completely not members of the set
(i.e., have a membership value of 0). IOs of size between 0 and 100,000 bytes are partial mem-
bers of the set, with their membership in the set decreasing linearly as their size increases.

Likewise, the statement
TERM large := (10000,0)(1000000,1);

defines the fuzzy set large as containing IOs with sizes between 10,000 bytes and 1,000,000
bytes (or more), with membership in the set increasing linearly as the size of the IO increases.
IOs larger than 1,000,000 bytes are fully members of the large set, while IOs smaller than 0
bytes (if such a thing were possible) are fully members of the small set.

The syntax of the TERM statements in this code defines a piece-wise linear function for the
sets, as shown in Figure 18. Other membership functions available as part of jFuzzyLogic are
described in Section 4.3.6.4.5.

4.3.6.4.4 Defuzzification

Defuzzification is the process by which degrees of membership are converted into a single nu-
meric value. This process is specified by the FCL DEFUZZIFY keyword, such as in the follow-
ing code.

//Defuzzifies the output variable move

DEFUZZIFY move

Figure 18. Piece-wise linear graphs for the mem-

bership functions of the small and large fuzzy sets.

Approved for Public Release; Distribution Unlimited.

 43

 TERM unlikely := (0,1) (0.3,0) ;

 TERM likely := (0.7,0) (1,1);

 METHOD : COG;

 DEFAULT := 0.25;

END_DEFUZZIFY

The first line
DEFUZZIFY move

identifies that the ouput variable move will be defuzzified by this statement. The next two lines
 TERM unlikely := (0,1) (0.3,0) ;

 TERM likely := (0.7,0) (1,1);

Define the membership functions associated with this output variable in the same manner as de-
scribed in Section 4.3.6.4.3 and result in the fuzzy sets shown in Figure 19.

Figure 19. Piece-wise linear graphs for the membership functions of move is likely and un-

likely.

The next line
METHOD : COG;

defines the method used to defuzzify the output variable‟s degrees of membership in its fuzzy

sets. In this case, we utilized a center of gravity (COG) calculation to determine the output. For
example, consider a case where move’s degree of membership in unlikely is ~ 0.7 and its degree
of membership in likely is approximately 0.2. This is shown in Figure 20, where the shading in
each set represents move‟s degree of membership in the set.

Approved for Public Release; Distribution Unlimited.

 44

Figure 20. Example membership set where move’s degree of membership in unlikely and

likely is ~0.7 and ~0.2, respectively.

The center of gravity method takes the average of the two sets, weighted by the degree of mem-
bership in each set, and calculates a single numeric output value for move. The resulting value is
represented by the vertical line in the graph in Figure 20, in this case a membership value of
0.32.

The next line
 DEFAULT := 0.25;

simply states a default return value in the event that the degree of membership in each set is 0.

4.3.6.4.5 Membership Functions

The examples in the previous sections showed piece-wise linear functions as membership func-
tions. The following section describes other membership functions that jFuzzyLogic provides1.

Piece-wise Linear

Figure 21. Example piece-wise linear membership functions

1 These come from http://jfuzzylogic.sourceforge.net/html/membership.html.

Approved for Public Release; Distribution Unlimited.

 45

Usage: (x_1, y_1) (x_2, y_2) (x_n, y_n)

FUZZIFY inVar1

 TERM poor := (0,1) (2, 1) (4, 0) ;

 TERM good := (1, 0) (2, 0.5) (3, 0.7) (4,1) (4.5, 1)

 (5, 0.6) (6, 0.3) (7, 0.3) (8, 0.8) (9, 0.8) (10,0);

 TERM excellent := (6, 0) (9, 1) (10,1);

END_FUZZIFY

Triangular

Figure 22. Example triangular membership functions

Usage: trian min mid max

FUZZIFY inVar2

 TERM poor := trian 0 2.5 5;

 TERM good := trian 2.5 5 7.5;

 TERM excellent := trian 5 7.5 10;

END_FUZZIFY

Trapezoidal

Figure 23. Example trapezoidal membership functions

Approved for Public Release; Distribution Unlimited.

 46

Usage: trape min midLow midHigh max

FUZZIFY inVar3

 TERM poor := trape 0 2 3 4;

 TERM good := trape 3 4 5 6;

 TERM excellent := trape 5 6 7 8;

END_FUZZIFY

Gaussian

Figure 24. Example Gaussian membership functions

Usage: gauss mean stdev

FUZZIFY inVar5

 TERM poor := gauss 2 2;

 TERM good := gauss 5 2;

 TERM excellent := gauss 8 2;

END_FUZZIFY

Generalized bell

Figure 25. Example generalized bell membership functions

Approved for Public Release; Distribution Unlimited.

 47

Usage: gbell a b mean

FUZZIFY inVar4

 TERM poor := gbell 2 4 2;

 TERM good := gbell 2 4 5;

 TERM excellent := gbell 2 4 8;

END_FUZZIFY

Sigmoidal

Figure 26. Example sigmoidal membership functions

Usage: sigm gain center

FUZZIFY inVar6

 TERM poor := sigm -4 3;

 TERM good := sigm 4 7;

END_FUZZIFY

Singleton

Figure 27. Example singleton membership functions

Usage: X (indicating the constant at which the variable has membership of 1)

Approved for Public Release; Distribution Unlimited.

 48

FUZZIFY inVar7

 TERM poor := 2;

 TERM good := 5;

 TERM excellent := 8;

END_FUZZIFY

4.3.6.4.6 FCL Rule Example

The following section shows an example of how the valuation of an Information Object is per-
formed with an example FCLRule. The example FCLRule uses the Variable Map specified in
Table 10 and the FIS created from the FCL File specified in the following code listing.

Table 10. Mapping from Fuzzy Input Variable Names to Fuzzy Variables

Input Variable Name Fuzzy Variable Used

“ioSize” IOSizeVariable
“age” AgeVariable
“missionStatus” MissionVariable

Below is a full listing of the FCL File:
FUNCTION_BLOCK moveBlock

//Defines the name of input variables

VAR_INPUT

 ioSize : REAL;

 missionStatus : REAL;

 age : REAL;

END_VAR

//Defines the name of output variables.

VAR_OUTPUT

 move : REAL;

END_VAR

//Fuzzifies missionStatus using a linear stepwise function

FUZZIFY missionStatus

 TERM active := (0.0,0)(1.0,1);

END_FUZZIFY

//Fuzzifies age input using a sigmoidal function

FUZZIFY age

 TERM young := sigm -0.0001 60000;

 TERM old := sigm 0.00001 500000;

END_FUZZIFY

//Fuzzifies ioSize using a linear stepwise function

FUZZIFY ioSize

 TERM small := (0,1)(100000,0);

 TERM large := (10000,0)(1000000,1);

END_FUZZIFY

//Defuzzifies the output variable move

DEFUZZIFY move

 TERM unlikely := (0,1) (0.3,0) ;

 TERM likely := (0.7,0) (1,1);

 METHOD : COG;

Approved for Public Release; Distribution Unlimited.

 49

 DEFAULT := 0.25;

END_DEFUZZIFY

RULEBLOCK first

 // Use 'min' for 'and' (also implicit use 'max'

 // for 'or' to fulfill DeMorgan's Law)

 AND : MIN;

 // Use 'min' activation method

 ACT : MIN;

 // Use 'max' accumulation method

 ACCU : MAX;

RULE 1 : IF ioSize IS small

 THEN move IS unlikely WITH 0.7;

RULE 2 : IF ioSize IS large

 THEN move IS likely WITH 0.5;

RULE 3 : IF missionStatus IS active

 THEN move IS unlikely;

RULE 4: IF missionStatus IS NOT active

 THEN move IS likely WITH 0.35;

RULE 5: IF age IS young

 THEN move IS unlikely WITH 0.8;

RULE 6 : IF age IS old

 THEN move IS likely WITH 0.4;

END_RULEBLOCK

END_FUNCTION_BLOCK

Consider an IO that is 90 KB, 8.33 minutes old, and belongs to a mission with priority of 0.7.
First, the Fuzzy Variables extract these values and pass them to the FIS as inputs.

VAR_INPUT

 ioSize : REAL;

 missionStatus : REAL;

 age : REAL;

END_VAR

Next, each input is fuzzified,
//Fuzzifies missionStatus using a linear stepwise function

FUZZIFY missionStatus

 TERM active := (0.0,0)(1.0,1);

END_FUZZIFY

The mission priority (0.7) is mapped directly to mission status, as shown in Figure 28.

Approved for Public Release; Distribution Unlimited.

 50

Figure 28. The missionStatus fuzzy set. The vertical line indicates the membership value of

the IO in this set.

Next, we fuzzify the age input, this uses two sigmoidal functions to represent young and old.

//Fuzzifies age input using a sigmoidal function

FUZZIFY age

 TERM young := sigm -0.0001 60000;

 TERM old := sigm 0.00001 500000;

END_FUZZIFY

The IO‟s age of 8.33 minutes (500,000 ms) falls outside the young set (upper bound of 60,000
ms) and approximately half in the old group, as shown in Figure 29.

Figure 29. The age fuzzy sets. The vertical line indicates the membership value of the IO in

the old set.

Next, we fuzzify IO size. The small and large sets are the same piece-wise sets used as a pre-
vious example, and shown in Figure 30.

//Fuzzifies ioSize using a linear stepwise function

FUZZIFY ioSize

Approved for Public Release; Distribution Unlimited.

 51

 TERM small := (0,1)(100000,0);

 TERM large := (10000,0)(1000000,1);

END_FUZZIFY

With a size of 90 KB, the IO is about equally in the small and large sets.

Figure 30. The size fuzzy sets. The vertical line indicates the membership value of the IO in

the small and large sets.

Next, we illustrate how to defuzzify the move output set. The output value move provides a par-
tial order of IO valuation, with respect to its likelihood for being moved or not. Therefore, we
define move as two fuzzy output sets, likely and unlikely, shown in Figure 31. The numeric value
of move is determined by performing a center of gravity (COG) calculation on the two associated
sets. Additionally move is defined to have a default value of 0.25 in the event that it has no
membership in likely and unlikely.

//Defuzzifies the output variable move

DEFUZZIFY move

 TERM unlikely := (0,1) (0.3,0) ;

 TERM likely := (0.7,0) (1,1);

 METHOD : COG;

 DEFAULT := 0.25;

END_DEFUZZIFY

Approved for Public Release; Distribution Unlimited.

 52

Figure 31. The move sets, likely and unlikely, defined around a center of gravity.

Once the inputs are fuzzified, the statements in the rule block are evaluated. Below, we describe
how the membership of move in likely and unlikely is affected as each rule in the rule block is
executed. The shaded section of each graph indicates the membership of move in each set and the
vertical line indicates the resulting center of gravity calculation (i.e., the combined move value)
at that point.

At each step we also indicate the resulting value of move if it was defuzzified at that point us-
ing the center of gravity calculation, this is represented by the vertical mark on the graph.

Before the rules can be executed, we need to define several operations. For details on these
operations see Section 4.3.6.4.2.

 // Use 'min' for 'and' (also implicit use 'max'

 // for 'or' to fulfill DeMorgan's Law)

 AND : MIN;

 // Use 'min' activation method

 ACT : MIN;

 // Use 'max' accumulation method

 ACCU : MAX;

The first rule is:
RULE 1 : IF ioSize IS small

 THEN move IS unlikely WITH 0.7;

Because ioSize is slightly in the small set, this initially places the membership of move in unlike-

ly, as shown in Figure 32.

Approved for Public Release; Distribution Unlimited.

 53

Figure 32. The result of evaluating Rule 1.

RULE 2 : IF ioSize IS large

 THEN move IS likely WITH 0.5;

Similarly, because ioSize is also slightly in the large set, this results in move having a small de-
gree of membership in likely, as shown in Figure 33.

Figure 33. The result of evaluating Rule 2.

RULE 3 : IF missionStatus IS active

 THEN move IS unlikely;

missionStatus has a degree of membership of 0.7 in the active set, causing this rule to give move
a degree of membership of 0.7 in the unlikely set. This membership in move is accumulated with
the previous membership as defined in the rule block,

 // Use 'max' accumulation method

 ACCU : MAX;

Approved for Public Release; Distribution Unlimited.

 54

Therefore we take the max of the two and move‟s degree of membership in unlikely is now 0.7
(shown by the shading in the unlikely set in Figure 34).

Figure 34. The result of evaluating Rule 3.

RULE 4: IF missionStatus IS NOT active

 THEN move IS likely WITH 0.35;

missionStatus has a membership of 0.7 in the active set (Figure 28), and therefore is slightly
NOT active (0.3). However this rule is only given a weight of 0.35, and therefore the degree of
membership of move in likely is calculated as NOT active * rule weight = 0.3 * 0.35 = 0.105.
This is more than the previous calculated degree of membership in likely so our accumulation
method assigns the new value as the degree of membership in likely, as shown in Figure 35.

Figure 35. The result of evaluating Rule 4.

Approved for Public Release; Distribution Unlimited.

 55

RULE 5: IF age IS young

 THEN move IS unlikely WITH 0.8;

Age is entirely not in the young set and therefore this rule has no effect, shown in Figure 36.

Figure 36. The result of evaluating Rule 5.

RULE 6 : IF age IS old

 THEN move IS likely WITH 0.4;

age has a degree of membership in the old set of approximately 0.5 (Figure 29), therefore this
rule places move approximately half in the likely set, however the rule is only weighted at 0.4
and therefore the membership in the move set is closer to 0.2. The new degree of membership for
move in likely is accumulated by taking the max with the previous value resulting in the degrees
of membership seen in Figure 37.

Figure 37. The result of evaluating Rule 6, the final rule. The vertical line indicates the out-

put value of move.

Approved for Public Release; Distribution Unlimited.

 56

As shown in Figure 37, the final values for move put it at approximately 0.7 in the unlikely set
and approximately 0.2 in the likely set. The COG function creates a final move value of 0.32.

4.3.7 Prototype Implementation of the Group Manager

The Group Manager maintains a Group Context Map containing definitions of groups of IOs, as
well as an Accessor Map that is used to index IOs and determine group membership.

The Group Manager is found in mil.af.rl.phoenix.ilm.groups.GroupManager and im-
plements the interface mil.af.rl.phoenix.ilm.groups.GroupManagerInterface.

4.3.7.1 Group Context

Group contexts (mil.af.rl.phoenix.ilm.groups.GroupContext) are used as definitions for
groups of Information Objects. They extend the Phoenix Base Context
(mil.af.rl.phoenix.contexts.BaseContext) and implement the Group Context Interface
(mil.af.rl.phoenix.ilm.grouping.GroupContextInterface). The Group Manager imple-
mentation stores these contexts in Map<String, GroupContextInterface> groupMap where
the key is the group identifier. Each group context contains the five specific fields described in
Table 11.

Table 11. The Fields in the Group Context

Name Type Description

Group Identifier String A unique identifier for the group.
Predicate String Group membership is determined by an XPath

query.
Valuation Rule Name String The ValueDepreciationFunction stores multiple

valuation rules in its rule map (Map<String, Eval-
uationRuleInterface>). The name of the rule that
should be used for IOs in the group it is specified in
this field. If no rule name is specified, the rule
named “DEFAULT” will be used.

Stored Value Map Map

<String, Object>
A mapping of String to Object that contains addi-
tional group details. During the valuation process,
this is passed to the EvaluationRule along with the
IO being evaluated. A FuzzyVariable is able to use
values in the map as inputs to the value calculation.
For example, a group representing a mission with an
importance of 0.7 would have an entry of [Mission,

0.7] in its Stored Value map. This 0.7 would be read
as an input for any valuation rule that utilizes a Mis-

sionVariable.
Precedence int If an IO is a member of more than one group, the

group with the highest precedence is used for valua-
tion purposes. If multiple groups are tied for the
highest precedence, then the IO is valued with re-
spect to each group, and the IO is assigned the max-
imum value.

Approved for Public Release; Distribution Unlimited.

 57

4.3.7.2 Accessor Interface

The Accessor Interface (mil.af.rl.phoenix.ilm.AccessorInterface) declares a single me-
thod that extracts the field for an IO‟s index entry from the IO.

public String getField(InformationInterface io)

The Group Manager maintains a mapping of these Accessors in Map<String, AccessorInter-
face> accessorMap, which is central to building indices for group management in the VFILM
prototype. Group membership is based upon an IO‟s entry in the ILMIndex. When an IO is being
indexed, the ILMIndex retrieves the AccessorMap from the GroupManager. Each entry contains
a field with the name of each key in the AccessorMap. The contents of each field are determined
by the corresponding Accessor.

For example, consider the mapping of

“type” → InfoTypeAccessor

InfoTypeAccessor is an accessor that returns the Information Type of a given IO. Given an IO
of type “mil.n.ship” this mapping would result in the following field in the index entry for that
IO.

<type> mil.n.ship </type>

These index entries facilitate the movement and valuation of entire groups of IOs at a time.
In the current prototype AccessorInterface is implemented by the six classes described in Ta-
ble 12.

Table 12. Accessor classes implemented in the Group Manager prototype

Class Name Description

ContextIDAccessor Returns an IO‟s context ID

InfoTypeAccessor Returns an IO‟s Information type
PublisherIDAccessor Returns the “publisherId” attribute from an IO‟s context
PublishTimeAccessor Returns the “publishTime” from an IO‟s context
ContextAccessor Returns a specified attribute from an IO‟s context.

The attribute is specified as a bean property: String attr

MetadataAccessor Returns the results of a specified XPath query over the IO‟s metadata.
The query is specified as a bean property: String query

4.3.8 Prototype Implementation of the ILM-HSM Adapter

Our prototype ILM-HSM Adapter is designed to work in a setting where the Repository Service
is using Berkeley Repositories, there are two storage locations available (level 0 and level 1), and
there is either not an active HSM or the HSM is only managing files located in level 1. This re-
sults in the ILM-HSM Adapter being responsible for all movement of information between level
0 and level 1+.

Additionally, the Berkeley Repo Adapter is responsible for storing the values and index en-
tries of IOs that have been inserted into the repository. This is accomplished through the use of a
Berkeley DB Value Store and an ILM Index respectively.

Approved for Public Release; Distribution Unlimited.

 58

The Berkeley Repo Adapter (mil.af.rl.phoenix.ilm.adapter.BerkeleyRepoAdapter)
implements the Adapter Interface (mil.af.rl.phoenix.ilm.adapter.AdapterInterface).

4.3.8.1 The ILM Index

The ILM Index (mil.af.rl.phoenix.ilm.index.IlmIndex) implements the ILM Index Inter-
face (mil.af.rl.phoenix.ilm.index.IlmIndexInterface). It utilizes the Berkeley XML DB
for Indexing IOs over fields relevant to grouping. This allows those IOs to be retrieved quickly
when a group has to be updated or reevaluated. The Index works closely with the Group Manag-
er and uses the Group Manager‟s Accessor Map to build its entries.

An IO is inserted into the Index via a call to
public void indexIO(InformationInterface io)

The ILM Index is used to retrieve the context ID‟s of IOs associated with a group via a call to
public List<String> getIds(String predicate)

Similarly, given a group of IOs, the groups they are associated with can be returned via a call to
public Map<String,List<GroupContextInterface>>

getGroupStatus(List<InformationInterface> ioList)

This returns a mapping of Context ID to a list of groups of associated IOs.

4.3.8.2 The Value Store

To determine which IOs need to be moved, the Berkeley Repo Adapter maintains a Value Store
that tracks each IO‟s context ID, value, and storage level. Value Stores must implement the Val-
ue Store Interface (mil.af.rl.phoenix.ilm.adapter.ValueStoreInterface). The VFILM
prototype provides two implementations:

 The Berkeley DB Value, mil.af.rl.phoenix.ilm.adapter.values.Berkeley-

DBValueStore
 The In Memory Value Store, mil.af.rl.phoenix.ilm.adapter.values.InMemory-

ValueStore.
The Berkeley DB Value store uses a Berkeley Database to store IO values. It is persistent be-

tween runs and is the recommended current implementation. The In Memory Value Store simply
uses Java data structures (LinkedLists and HashMaps) to store Information values. Because of
this, it is not persistent between runs and is likely to perform poorly on very large data sets. It
was created primarily for testing and as part of an early version of the prototype.

Values are passed in and out of the Value Store as two different types of objects:

 mil.af.rl.phoenix.ilm.iorep.IoRankingInterface : Contains an IO‟s value and ID
 mil.af.rl.phoenix.ilm.iorep.IoReferenceInterface : Contains an IO‟s value, ID,

and storage level.

For instance a call to
public void updateIOValue(List<IoRankingInterface> ioValueList, boolean areNew);

updates the values for all IOs in the list. If areNew is true then the values and ranks will be add-
ed to the Value Store with the assumption that they are located on level 0.

public void updateFuture(final Future<List<IoRankingInterface>> f, final boolean

areNew);

Approved for Public Release; Distribution Unlimited.

 59

updateFuture is an asynchronous version of the previous method which accepts a Future object
containing what will be the results of a call to the VDF.

public LinkedList<IoRankingInterface> getMoveList(int numToReturn, int level);

getMoveList returns a list of the IOs with the highest VDF valuation (i.e., the most depreciated,
least important IOs) on the specified storage level.

public void move(List<IoRankingInterface> haveMoved, int newLevel);

The function move indicates that the specified IOs have moved to a new storage level.
public List<LinkedList<IoRankingInterface>> getOverLapLists();

getOverLapLists contains lists of IOs that are out of order on each storage level. For example,
this list would contain all IOs on level 0 with a VDF value greater than any IO on level 1 (indi-
cating that the IOs on level 0 are more depreciated than the ones on level 1). Similarly, every IO
on level 1 with a value less than any IO on level 0 would be returned. These IOs can be thought
of as out of order and are candidates to be moved during a Clean Up event

4.3.8.3 Interaction with the Berkeley Repository

The Berkeley Repo Adapter interacts with a Berkeley Repository via calls to the ILM Compati-
ble Repository Service. The repository service can maintain multiple repository instances and
manages them via UIDs. Upon initialization, the adapter stores the UID of the repository it cor-
responds to and includes this UID during calls to the repository service so that the correct reposi-
tory is affected.

4.4 VFILM Demonstration

We developed a demonstration to showcase many of the features of the VFILM Prototype, in-
cluding mission aware information valuation and movement, information grouping, monitoring
of storage, runtime administration, custom query behavior, and integration with other policy sys-
tems (specifically, QED policy). This section provides an overview of the demonstration. A full
description of how to build the VFILM prototype and run the demonstration is in the VFILM In-

stallation, Operations, Administration, & Demonstration Guide [3].
The demonstration consists of three missions being carried out in a shared geographic region.
Mission A consists of Unit 1 traversing the area in a grid-like pattern continuously publishing

small and large IOs.
Mission B involves Unit 2 traversing a parabolic path across the region. A custom event

handler, the Location Manager, tracks Unit 2 and sends ILM Events to the ILM Controller mak-
ing the IOs near Unit 2 highly important to the mission.

Mission C involves Unit 3 travelling to an area of interest. Once it reaches the area, it begins
publishing „recon‟ type IOs. A Mock ISQM Service issues a new QED Policy which makes IOs
of this type important to the mission. An ISQM Listener Event Handler translates this policy into
an ILM Group Update Event.

Three GUIs display what is occurring: the Location Demo GUI, the ILM Value Histogram,
and the ILM Freespace Chart.

The Location Demo GUI, shown in Figure 38, displays a Cartesian grid representing the mis-
sion area. IOs that contain positional information in their metadata are plotted on the grid, and
color coded to represent where they are stored. Red marks indicate the IO metadata and payload
are located in the level 0 store. Blue marks indicate the IO metadata is located in the level 0

Approved for Public Release; Distribution Unlimited.

 60

Figure 39. Value Histogram from VFILM Demonstration

Figure 38. Location Demo GUI

store, but the payload is located in level 1. Green marks indicate the IO has been moved to a sec-
ondary repository and both the metadata and payload are in level 1 store. Black marks do not
represent a storage location, but rather indicate that this is the most recent IO from a given pub-
lisher and therefore represents the publisher‟s last known location.

The ILM Value Histogram displays where IOs of different values are stored, as shown in
Figure 39. The x axis indicates the value of the IO, with further to the left indicating it is more
important to the ongoing scenario (and therefore has a lower move valuation), and the y axis in-
dicates number of IOs with that value. As with the Location Demo GUI, the color represents sto-
rage location, red indicates metadata and payload are on level 0, blue indicates metadata is on
level 0 and payload is on level 1, and green indicates metadata and payload are on level 1.

The ILM Freespace Chart, shown in Figure 40, displays the amount of free space on level 0
(y axis) over time (x axis). This is displayed as a red line. The current storage thresholds are

Approved for Public Release; Distribution Unlimited.

 61

Figure 40. Free Space GUI from VFILM Demonstration

represented as gray horizontal lines. Vertical lines of various colors indicate ILM events that
were sent to the controller with the value on the x axis indicating the time they were sent.

The demonstration includes the following actions:

 Mission A Starts, Unit 1 repeatedly publishes 3 small IOs, followed by 1 large IO.
 Mission A ends and IOs associated with it are devalued.
 The ILM‟s storage threshold is changed via an ILM Policy Event.
 The default evaluation rule is changed to more heavily weight age via an ILM Policy

Event. IOs are revalued.
 The ISQM Listener is added as an Event Handler via an ILM Policy Event.
 Mission B Starts. Unit 2 travels in a parabolic course publishing IOs of type bft (i.e., blue

force track). The Location Manager tracks Unit 2 and highly values all IOs in the region
around it.

 An ISQM Policy is issued (by pushing the ISQM Trigger Button) and the ISQM Listener
triggers a group update making „recon‟ type IOs important.

 Mission C Starts. IOs in an area of interest become important.
 Unit 3 begins to travel to the area of interest. Unit 2 is still publishing IOs.
 Unit 3 approaches the area of interest and begins publishing „recon‟ type IOs.
 Mission C ends. The area of interest is devalued, but the „recon‟ IOs are still important.

Unit 2 continues to publish IOs.
 Metadata Movement is triggered via an ILM Event. 100 IOs (metadata and payload) are

moved to a secondary store.
 A query is issued for all IOs of type bft using a Phoenix Query Context. The n IOs are re-

turned.
 A query is issued using an ILM Query Context. It specifies to only run the query over

metadata stored in level 0 and only return IOs with payloads stored on level 0; i IOs are
returned.

Approved for Public Release; Distribution Unlimited.

 62

 A query is issued using an ILM Query Context. It specifies to only run the query over
metadata stored in level 0 and only return IOs with payloads stored on level 1; j IOs are
returned.

 A query is issued using an ILM Query Context. It specifies to only run the query over
metadata stored in level 1 and only return IOs with payloads stored on level 0. No reposi-
tories are configured to stored data in this configuration and 0 IOs are returned.

 A query is issued using an ILM Query Context. It specifies to only run the query over
metadata stored in level 1 and only return IOs with payloads stored on level 1; 100 IOs
are returned.

 The total number of IOs returned is n = i + j + 100.

4.5 VFILM Experiment Results

This section describes the results of conducting the experiments described in Section 3.7.2 and
collecting the metrics described in Section 3.7.1. More details about the experiments and results
are in the VFILM Experiment Results document [16]. All of the experiments were executed dur-
ing Spiral 2 of the VFILM project on the Spiral 1 prototype (the Spiral 2 prototype was delivered
at the end of the VFILM contract). Since we made several functional and performance improve-
ments to the VFILM prototype, the results documented in this report might actually be improved
if they were re-run on the Spiral 2 prototype.

To facilitate re-running the experiments, we wrote the experiments as JUnit tests. Therefore,
they are useful as functional and/or regression tests.

As mentioned in Section 3.7.1, we divided the metrics and therefore the tests into the follow-
ing two sets:

 Functionality (Efficacy) – Tests and metrics that evaluate the VFILM software‟s ability

to perform information lifecycle management and hierarchical storage management.
 Performance (Efficiency) – Experiments and metrics that evaluate the overhead, speed,

and resource usage of the VFILM software while performing information lifecycle man-
agement and hierarchical storage management.

4.5.1 Summary of Results

The metrics being gathered in each category, the tests and experiments conducted to gather them,
and a summary of results are described in Table 13 and Table 14.

Table 13. Functional Metrics, Tests, and Results
Metric
number

Description Tested By Section Result

F1
Responsiveness
to events

MissionTriggersVDFTest 4.5.2
VDF valuation is triggered by appropriate mission
events.

MoveScalingTest 4.5.2
Appropriate mission events can trigger the HSM
to move information objects.

FreespaceTriggersMoveTest 4.5.2
Appropriate system events can trigger the HSM to
move information objects.

F2
Repository
maintenance

FreespaceTriggersMoveTest

4.5.3
VFILM maintains free space between defined
maximum and minimum thresholds.

4.5.3
The ILM is able to monitor the amount of free
space in level 0.

F3 Publication PublishPerformanceTest 4.5.4 The publish operation with the archive bit set re-

Approved for Public Release; Distribution Unlimited.

 63

Metric
number

Description Tested By Section Result

correctness sults in the same number of archived IOs in the
baseline Phoenix and in the VFILM system.

F4
Query correct-
ness

QueryPerformanceTest 4.5.5
The baseline Phoenix and VFILM systems pro-
duce the same result set.

Table 14. Performance Metrics, Experiments, and Results

Metric
number

Description Experiment Section Result

P1 VDF scalability

VDFScalingTest. Measure the
time to execute the VDF and
compare to the number of IOs
and the IO size.

4.5.6
Execution time of the VDF is O(n), where n is the
number of IOs being evaluated. Execution time of
the VDF does not correlate to IO size.

P2 HSM scalability

MoveScalingTest. Time to
execute HSM as the number
of IOs increase.

4.5.7
Execution time of the HSM is affected by both the
number of IOs moved and the size of the IOs.
Larger IOs take longer because more data needs
to be moved in the file system. More IOs take
longer to move due to the filesystem operations of
locating more files on disk.

MoveScalingTest. Time to
execute HSM as the total
number of bytes increase.

4.5.7

P3
Publication
performance

PublishPerformanceTest.
Time to complete archive for
published IOs.

4.5.8

Publishing with VFILM takes approximately the
same time as the Phoenix baseline. Experiments
showed a mean 5% reduction in average time to
publish with archive using VFILM, only 1.5 stan-
dard deviations of the baseline Phoenix mean.
VFILM used an average of 13% more CPU, how-
ever, due to additional services. This is over 5
standard deviations. We conclude that any laten-
cy overhead imposed by VFILM (none in these
experiments) is statistically insignificant, but the
CPU overhead is statistically significant. The
number of services in the Spiral 2 prototype has
been reduced, so the CPU overhead could poten-
tially be lower with the final delivered prototype.

P4
Query perfor-
mance

QueryPerformanceTest. Time
to return queried IOs.

4.5.9

Experiments showed a mean 1.2% additional time
on average to execute a query in VFILM versus
the baseline Phoenix., less than 1.5 standard
deviations of the baseline Phoenix mean. The
query with VFILM takes on average only 1.2%
more CPU, less than one standard deviation. We
conclude that there is no statistically significant
overhead (latency or CPU) imposed by VFILM on
query operations.

P5

Cost of VDF
flexibility and
power (VDF
execution time)

VDFCompareTest. Time to
execute VDF with mission
association, age, and size
factors versus simple value
function using only age.

4.5.10
25% increase in mean evaluation time for using 3
factors in valuation versus one factor. Nearly 3x
increase in standard deviation.

4.5.2 Functional Metric F1 – ILM Responsiveness to Events

The ILM can be triggered to perform VDF valuation by Phoenix events. This test is a confir-
mation that Phoenix events, such as mission start, trigger VFILM to re-evaluate IOs associated

Approved for Public Release; Distribution Unlimited.

 64

with the mission (metric F1). The MissionTriggersVDFTest JUnit test confirms this by pub-
lishing 1000 IOs, split evenly between two missions. The test then sends a mission start event for
one of the missions and confirms that exactly 500 IOs are re-evaluated by the Value Deprecia-
tion Function (VDF). It also sends a mission start event that does not match any published IOs
and verifies that no evaluations occur in response to the event.

The HSM can be triggered to move information by Phoenix events. This test is a confirma-
tion that Phoenix events, such as mission prep, can be used to trigger movement events in the
HSM (specifically the ILM-HSM Adapter) (metric F1). The MoveScalingTest JUnit test con-
firms this functionality using a specialized version of the mission domain model. When the sys-
tem receives a mission prep event, it moves a pre-defined amount of data from the level 0 store
to the level 1 store. The test outputs the amount of data moved during each operation, allowing
us to confirm that each mission prep is triggering the appropriate action.

The HSM can be triggered to move information by system events. This test is a confirma-
tion that system events can be used to trigger movement events in the HSM (specifically the
ILM-HSM Adapter) (metric F1). The only system event currently defined is a disk space event,
which notifies the HSM that the level 0 store has dropped below the minimum free space thre-
shold. The FreespaceTriggersMoveTest JUnit test confirms this functionality by using a
125 MB partition to store the level 0 repository and quickly publishing IOs to exhaust free space.
The test logs the amount of free space left when a move event is triggered and confirms that it is
below the specified threshold.

4.5.3 Functional Metric F2 – Maintaining Level 0 Store

The ILM can maintain a specific amount of free space in level 0 store. This test is a confirma-
tion that IO movement is governed by the maximum and minimum free space thresholds speci-
fied for the system (metric F2). It is confirmed by the FreespaceTriggersMoveTest JUnit
test. Because the test reports the amount of space freed by each move operation, it confirms that
VFILM is in fact maintaining free space between the maximum and minimum thresholds de-
fined.

Figure 41 shows a visualization of this test running. Each decrease in available space is the
result of 10 MB of information being published. Along the bottom of the grid area, the total
amount of information published up to that point is noted. All increases in available space are
due to the ILM-HSM Adapter moving IOs from level 0 to level 1. As expected, the ILM-HSM
Adapter does not move any IOs until the available space drops below the “Begin Move” thre-
shold and it never moves enough IOs to make the free space exceed the “Stop Move” threshold.

The ILM can monitor the amount of free space in level 0 store. This hypothesis is also con-
firmed by the FreespaceTriggersMoveTest JUnit test used for the two previous tests.

4.5.4 Functional Metric F3 – Publication Correctness

A publication operation with the archive bit set will succeed in VFILM if it succeeds in the

baseline Phoenix system. This test is a confirmation that all well-formed IOs will be archived
successfully when published (metric F3). The PublishPerformanceTest JUnit test confirms
this functionality by publishing a large number of IOs and then outputting the total number arc-
hived. The test was run with 1000 small IOs and 100 large IOs, all of which were archived by the
repository service. The level 0 store was configured to be large enough that no move operations
to level 1 were necessary during the experiment. The test confirmed that all the IOs were arc-
hived successfully in both the baseline Phoenix and in the VFILM system.

Approved for Public Release; Distribution Unlimited.

 65

Figure 41. VFILM maintaining level 0 store: IO moves based “begin move” and “stop

move” thresholds.

4.5.5 Functional Metric F4 – Query Correctness

A query operation will return the same set of results in VFILM that it does in the baseline

Phoenix system. This test is a confirmation that queries will return all matching IOs in the
VFILM system (metric F4). The QueryPerformanceTest JUnit test confirms this functionali-
ty by publishing a large number of IOs and then executing a query that returns all IOs matching a
given predicate. The test was run with 1000 small IOs and 100 large IOs, all of which were re-
turned by a query matching their predicate. The level 0 store was configured to be large enough
that no move operations to level 1 were necessary during the experiment. The baseline Phoenix
and VFILM systems produced the same result set.

4.5.6 Performance Metric P1 – VDF Scalability

The time to execute the VDF increases linearly with the number of objects in the evaluation

set. This hypothesis covers metric P1. To test the VDF‟s scaling, and to confirm that it scales
with the number of IOs rather than their size, the VDFScalingTest JUnit test publishes a pre-
defined number of IOs and then triggers evaluation over the entire set. Using a shell script to au-
tomate the test, we ran it with two different IO sizes. For each IO size, we tested five different
repository configurations, containing 1MB, 25MB, 50MB, 75MB, and 100MB total. Results for
each IO size are plotted in Figure 42 and Figure 43, with a linear best fit line for each. The fit
line‟s coefficient of determination (R

2) is also listed. The coefficient of determination is a meas-
ure of the proportion of variability in a data set that is accounted for by the fit line, with 1 being
the best possible. The high variance in Figure 4 is probably due to the small number of IOs eva-
luated.

Approved for Public Release; Distribution Unlimited.

 66

Figure 43. The time to evaluate IOs scales linearly with larger IO sizes as well.

y = 0.0074x + 0.0584

R² = 0.8773

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

T
im

e
 t

o
 e

v
a

lu
a

te
d

 (
s

e
c

o
n

d
s

)

Number of IOs evaluated

1 MB IOs

Linear fit

Figure 42. The time to evaluate IOs scales linearly with the number of IOs evaluated.

y = 0.0123x - 0.1674
R² = 0.9963

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

T
im

e
 t

o
 e

v
a

lu
a

te
 (

s
e

c
o

n
d

s
)

Number of IOs evaluated

100 KB IOs

Linear fit

Approved for Public Release; Distribution Unlimited.

 67

For the smaller IO size (100 KB), there is a close linear fit. Additionally, the variance is low
for all set sizes. For the larger IO size (1 MB), the scaling still appears to be linear, but the va-
riance is much higher.

To ensure that the VDF does not scale with the size (in MB) of the evaluation set, we also
plotted the results of VDFScalingTest in terms of the size of the set. The results for both IO
sizes appear in Figure 44. The linearity of each dataset is unchanged, as the results come from
the same experiment, but plotting the two series together illustrates that scaling is dependent
upon the number of IOs rather than the data size of the evaluation set. With equivalent data sizes,
large IOs are evaluated much more quickly because the VDF‟s evaluation function is called few-
er times. While both the large IOs and small IOs scale linearly in this figure, they do so accord-
ing to clearly different linear functions.

One observation is the difference in slope on the small (100 KB) IO VDF evaluation graph

and the slope in the large (1 MB) IO VDF evaluation graph, implying that it takes longer to ex-
ecute the VDF function per IO when the IOs are smaller. The numbers in Table 15 verify this
observation.

Figure 44. The VDF does not scale linearly with the size (in MB) of the evaluation set.

y = 0.1235x - 0.1674

R² = 0.9963

y = 0.0074x + 0.0584

R² = 0.8773

-2

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

T
im

e
 t

o
 e

v
a

lu
a

te
 (

s
e

c
o

n
d

s
)

Size of evaluation set (MB)

100 KB IOs

1 MB IOs

100 KB fit

1 MB fit

Approved for Public Release; Distribution Unlimited.

 68

Table 15. Comparison of the ms/IO time to execute the VDF

No. of runs No. IOs / run Size of IO Ave. ms/IO Overall Ave. ms/IO
5 25 1 MB 8.856

8.623833 5 50 1 MB 10.112
5 75 1 MB 7.5973
5 100 1 MB 7.93
5 250 100 KB 10.2144

11.72483 5 500 100 KB 12.214
5 750 100 KB 12.40693
5 1000 100 KB 12.064

The average time to execute the VDF per IO appears to increase with the number of IOs in

the evaluation set. The sample size of these runs is too small (in terms of the variations in num-
bers of IOs) to draw too many conclusions, but there is an appearance of an increase in the aver-
age execution time of the VDF as the evaluation set increases, with an apparent 35% or so in-
crease in execution time when moving from 10s of IOs to 100s of IOs. This could be due to the
cost of storing and retrieving larger amounts of index information (e.g., paging effects), but we
do not have enough information to diagnose or draw too many conclusions. When the opportuni-
ty comes to transition VFILM into experimental or operational environments, additional experi-
ments and analysis is warranted to determine how well the VDF scales to much larger sets of IOs
(e.g., thousands or millions).

The conclusion might point to places for optimization of the VDF function (we have sugges-
tions for potential optimizations in Section 4.6) or to usage patterns, such as running VDF valua-
tion over groups of IOs instead of over full storage systems.

4.5.7 Performance Metric P2 – HSM Scalability

The time to execute the HSM move operation increases linearly with the number of objects

moved. This hypothesis covers metric P2 and it is only true when all IOs are of the same size.
We tested it using the MoveScalingTest JUnit test, which was run with two different IO sizes
and five different repository sizes, as specified in the experiment plan. The results for both IO
sizes appear in Figure 45. The coefficient of determination indicates a strong linear correlation in
both cases. Figure 45 also clearly shows that the two IO sizes do not scale according to the same
linear function. It takes longer to move an equivalent number of large IOs because the HSM ex-
ecutes the same number of move operations, but each operation requires more data to be moved
on the file system. While both large and small IO sizes appear to scale linearly, they do so ac-
cording to different linear functions.

Approved for Public Release; Distribution Unlimited.

 69

The time to execute the HSM move operation increases linearly with the number of bytes

moved. This hypothesis covers metric P2. The test refutes this hypothesis with the results re-
plotted in terms of data size in Figure 46. We only observed linear scaling when all IOs are of the
same size, which is not likely to be the common case. Large IOs are moved more quickly be-
cause the HSM needs to execute fewer move operations in order to free the same amount of
space. The overhead of locating files on disk to move dominates the run time. The size of each
IO also affects the scale, as this plot shows. It requires fewer move operations on the file system
to free the same amount of space with large IOs.

Figure 45. The HSM only scales linearly when all IOs are of the same size.

y = 0.0239x + 0.3322

R² = 0.9986

y = 0.0693x + 0.1534

R² = 0.999

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

T
im

e
 t

o
 m

o
v

e
 (

s
e

c
o

n
d

s
)

Number of IOs moved

100 KB

1 MB

100 KB fit

1 MB fit

Approved for Public Release; Distribution Unlimited.

 70

4.5.8 Performance Metric P3 – Publication Performance

A publication operation will take approximately the same amount of time to execute in

VFILM as it does in the baseline Phoenix system. The PublishPerformanceTest JUnit test
confirms this hypothesis. It publishes 1000 IOs and runs a timer starting at the first publication
operation and stopping at the last repository insertion. Table 16 shows the time reported by this
internal timer, as well as the real time and CPU usage according to the UNIX time utility. CPU
usage greater than 100% is possible because the test server has multiple processors.

Table 17 shows a summary of some relevant results from this experiment. The mean inser-
tion time between Phoenix and VFILM differs by about 1.5 standard deviations (taking the
Phoenix standard deviation), which indicates that it is plausible for the run times to have come
from the same statistical population. The CPU usage, however, is clearly different in a statistical-
ly significant degree. Again taking the standard deviation from Phoenix, the CPU usage means
are nearly six standard deviations apart. This is attributable to the additional overhead of running
VFILM‟s Spiral 1 prototype, which had three additional services running than the baseline (the
ILM service; a separate Group Manager service, which was folded into the ILM service in Spiral
2; and the Phoenix Event Notification Service, which was not running in the baseline).

There are a few other issues worth noting in these results. The standard deviations are lower
for VFILM than for Phoenix, which is probably due to testing on a multi-user system. Also, the
“real time” numbers recorded are much larger than the “time to insert” because the real time
measurements include short delays between publication operations.

Figure 46. The HSM does not scale linearly with the number of bytes moved.

y = 0.239x + 0.3322

R² = 0.9986

y = 0.0693x + 0.1534

R² = 0.999

0

5

10

15

20

25

30

0 20 40 60 80 100 120

T
im

e
 t

o
 m

o
v

e
 (

s
e

c
o

n
d

s
)

Size of IOs moved (MB)

100 KB IOs

1 MB IOs

100 KB fit

1 MB fit

Approved for Public Release; Distribution Unlimited.

 71

Table 16. Phoenix publication performance and VFILM publication performance.

Table 17. Summary of Phoenix vs VFILM publication performance.

 Phoenix VFILM

Time to insert
(seconds)

Mean 50.47 47.92

Standard deviation 1.705 0.4087

CPU usage (%) Mean 111.4 125.8

Standard deviation 2.408 0.8366

4.5.9 Performance Metric P4 – Query Performance

A query operation will take approximately the same amount of time to execute in VFILM as it

does in the baseline Phoenix system. The QueryPerformanceTest JUnit test confirms this
hypothesis. It publishes 1000 IOs, waits for all IOs to be inserted into the repository, and then
issues a query that returns the entire set. A timer is started when the query is executed and
stopped when the last IO is returned from the repository. Table 18 shows the time reported by
this internal timer, as well as the real time and CPU usage according to the UNIX time utility.
CPU usage greater than 100% is possible because the test server has multiple processors.

Table 19 shows a summary of some relevant results from this experiment. The mean query
time between Phoenix and VFILM varies by less than 1.5 standard deviations (taking the Phoe-
nix standard deviation), which indicates that it is plausible for the run times to have come from
the same statistical population. The CPU usage is within a single standard deviation. Query per-
formance is much closer than publication performance for the two systems because the extra ser-
vices running in the VFILM experimental case do not do any processing in response to queries.

Phoenix Publication of 1000 IOs VFILM Publication of 1000 IOs

Time to in-
sert (secs)

Real time
(secs)

CPU usage
(%)

 Time to in-
sert (secs)

Real time
(secs)

CPU usage
(%)

52.67 78.3 108 48.22 75.5 125

51.62 77.4 110 47.28 74.9 126

48.59 74.2 114 48.32 76.2 125

49.08 74.5 113 47.89 75.3 126

50.41 75.88 112 47.87 75.3 127

Approved for Public Release; Distribution Unlimited.

 72

Table 18. Phoenix query performance and VFILM query performance.

Table 19. Summary of Phoenix vs. VFILM query performance.

 Phoenix VFILM

Time to process query
(seconds)

Mean 13.82 13.99

Standard deviation 0.1369 0.1452

CPU usage (%) Mean 162.2 163.4

Standard deviation 1.789 2.408

4.5.10 Performance Metric P5 – Mission Effectiveness

Using a combination of factors to determine which IOs have the highest value will result in

more “mission-relevant” IOs in level 0 store without unduly affecting performance. VFILM‟s

use of FCL offers flexibility advantages over a simpler valuation scheme. Valuation rules, writ-
ten in FCL, calculate the value of an IO using its group associations and properties of the IO. For
example, the current VDF is based upon mission association, age, and size. Additionally, the
rules can be changed at runtime to reflect changing deployment requirements. For instance, any
factor can be dropped or have its weight adjusted.

The VDFCompareTest JUnit test allows us to estimate the cost of the VDF flexibility de-
scribed in the previous paragraph versus a simpler, single-factor valuation function. The simple
function that we used for experiments ranked IOs based on age. We used VDFCompareTest to
publish and evaluate 1000 IOs, reporting the total time spent evaluating all IOs. Table 20 shows
the mean and standard deviation across ten runs. Based on the mean values, the VDF increases
the evaluation time by about 25% compared to the single-factor function.

Phoenix Query for 1000 IOs VFILM Query for 1000 IOs

Time to re-
trieve (secs)

Real time
(secs)

CPU usage
(%)

 Time to re-
trieve (secs)

Real time
(secs)

CPU usage
(%)

13.98 39.42 161 14.12 41.18 160

13.88 39.24 160 14.11 40.82 164

13.67 38.86 164 14.04 40.67 166

13.88 39.33 164 13.88 40.55 162

13.68 39.1 162 13.8 40.60 165

Approved for Public Release; Distribution Unlimited.

 73

Table 20. The time (in milliseconds) spent in the evaluation function for both the single-

factor value function and the fuzzy logic VDF.

 Single-factor function Fuzzy logic VDF

Mean evaluation time 15.98 s 19.97 s

Std. deviation 84.27 ms 249.1 ms

4.5.11 Summary of Experimental Results

This section has presented the results of experiments to evaluate the functionality and perfor-
mance of the current VFILM prototype software. The process of defining the metrics, construct-
ing and executing the tests, and analyzing the results has the following significant conclusions:

 We have produced a set of JUnit tests used to conduct the experiments herein, which
serve as a set of validation and performance tests useful as part of the software and do-
cumentation delivery for this prototype.

 Many of the testing results, specifically the functional tests and metrics, validate that the
VFILM prototype meets the functionality requirements that we set out to implement.

 Other testing results, specifically the scalability metrics, indicate more clearly the factors
that go into the performance of the ILM and HSM components of VFILM, and establish a
prototype baseline for comparison with later versions or prototypes, e.g., that interact
with different repositories, file systems, or HSM systems.

 The performance results indicate that the Spiral 1 VFILM prototype, developed as a rapid
prototype and not optimized for performance, actually imposes very little overhead on the
Phoenix publication, archive, and query operations.

The performance test comparing multi-valued VDF evaluation using fuzzy logic versus sin-
gle valued evaluation provides two significant conclusions. First, since the prototype was devel-
oped with flexibility, extensibility, and expressiveness in mind, not performance, the additional
time we observed does not appear to be too bad. Second, however, when contrasted with the oth-
er performance results, it indicates an opportunity for optimization in future versions.

4.6 Lessons Learned & Recommendations

One of the goals of the VFILM prototype was to provide a general Information Lifecycle Man-
agement framework. Because of this, we tried to make few assumptions about use case scenarios
and deployment situations. This, however, resulted in us making very few optimizations to the
prototype software. In this section, we discuss several possible optimizations that we can rec-
ommend.

Not retrieving entire Information Objects for evaluation. When an IO needs to be reeva-
luated the current prototype retrieves the entire IO from the disk and passes it to the VDF. How-
ever, the evaluation rules only use certain characteristics: an IO‟s mission status, creation time,

and size in the VFILM demonstration. Mission status (and other group memberships) was based
on a specific set of fields in the ILM Index (IO Type, publisher ID, location, etc.). Group status
could have been determined based upon these indexed fields without reading the entire IO from
the disk every time it had to be evaluated. Similarly, IO creation time and IO size could be stored

Approved for Public Release; Distribution Unlimited.

 74

in the Index (or another suitable DB) and passed to the VDF without reading the entire IO from
the disk. For IOs with particularly large payloads this could drastically increase performance.

Using the Repository as the ILM Index. The ILM Index and Accessor Interface were de-
signed so that information groups could be defined over any possible fields. To handle this, we
introduced an additional database to keep track of IOs. In some scenarios it could be possible
that all relevant grouping information is contained in an IO‟s metadata. In these situations, the
repository‟s metadata database could provide the functionality of the ILM Index. Because the

ILM Index is contained in the ILM-HSM Adapter, this would simply require modifying the
adapter to make group related queries against the repository‟s metadata DB instead of the ILM

Index. This would reduce the overhead of the ILM Service by removing the overhead associated
with the ILM Index.

Using the Repository as the Value Store. The BerkeleyDB Value Store utilizes a Berkeley
Database for storing the ID, value, and storage location of an IO. This is information that could
be potentially stored in the Repository‟s metadata database. Because the value store is managed

by the ILM-HSM Adapter, calls to the value store could be redirected to the Repository instead
and the interface to the Adapter would remain the same.

Bulk operations. There are several points in the VFILM prototype where IOs are treated in
batches (evaluation, indexing, moving, retrieval from repository, etc.). Values for the size of the
batches were generally picked arbitrarily and we did not tune the configuration for performance.
The following list is a few places where such values could be tuned for better performance:

 Index – When the group status of IOs is being retrieved, this could be done in batches of
n IOs at a time.

 VDF – When the valuation of IOs is being performed, this could be done over batches of
n.

 BerkeleyRepoAdapter – During moves and clean up operations, IO entries from the value
store could be retrieved in batches of n.

Information Channel for Retrieved IOs. Currently when the ILM-HSM adapter requests IOs
from a repository, these are returned via a call to the ILM compatible Repository Service. Al-
though this does what is required, it does not match Phoenix‟s use of Information Channels for
passing IOs between services, and is an area for enhancement.

4.7 Directions for the Future

While this project produced significant results and established a solid prototype ILM service, it
has only scratched the surface of the potential for ILM within the AFRL suite of Information
Management capabilities. This section describes some potential future directions in which re-
search, development, and transition activities could proceed.

Transition and Experimentation. The experiments that we conducted and the metrics that
we gathered provide some concrete and empirical evidence of the VFILM functionality and per-
formance, as well as some areas for emphasis in looking to optimize it. A next step would be to
try it out in closer-to-real environments, e.g., embedded platforms like Marti, the LITENING
Pod [14], or one of the Navy Limited Technology Experiments (LTE).

Another path forward is to integrate the VFILM software into the Phoenix code repository,
and make it a mainline part of the Phoenix software distributions. Some of the work we did in
the VFILM effort, such as the effort to make VFILM work with the existing Phoenix services
and the provision of JUnit tests for VFILM, help facilitate this path forward.

Approved for Public Release; Distribution Unlimited.

 75

Support for Additional Classes of Repositories. In the prototype that we developed, we took
advantage of some of the ways that the Berkeley Repository is implemented and the ways in
which it is used in the Phoenix services. However, the Berkeley Repository is just one possible
Phoenix repository, and different repositories will have different requirements and potential op-
timizations. For example, whereas the Berkeley repository stores one IO per file and supports
any Information type, the PostGIS repository used in Fawkes stores all IOs in a database table
and manages only one Information type, i.e., Cursor on Target [24].

Improvements to the Phoenix Query Service to Support Repositories that Might be Located

in Multiple Hierarchical Levels of Storage. Whereas we made VFILM as non-intrusive to the
existing Phoenix services as possible, the introduction of ILM has visible side effects on the
Phoenix Query Service, in the form of the following:

 Potentially returning a different order of results when IOs are moved
 Introducing latency when queries involve non-level 0 storage
 Potentially a reduced result set when IOs are moved to non-indexable storage
These effects happen and can be visible to the user, but without him/her having any control

over them, unless the Query Service is extended to be ILM-aware and to expose interfaces to
manage the options that ILM provides.

One approach is that the Query Service could respect “hints” provided by the querying client.
The hints could be stored in the ILM Repository context or the ILM Query context and could
include options such as the following:

 The Query Service should provide results in level 0 first.
 The Query Service should provide only results in level 0.
 The Query Service should return all results.
 The Query Service should execute queries over specific storage levels.
Another useful feature would be a Query Service interface that could provide statistics such

as the following that would be useful to the querying client:

 The number of levels of storage.
 The number and types of IOs at each level.
Expansion of Mission Models and VDF Factors. The VFILM prototype includes

straightforward versions of some of the concepts that it covers. For example, the mission model
that we cover includes essentially only the following mission aspects:

 The identification of mission epochs, specifically preparation for an upcoming mission,
mission start, and mission end.

 The realization that some missions are more important than others (captured in the impor-
tance in VFILM policy).

There is the opportunity in the future to examine much more comprehensive mission models.
We can only anticipate what some of these models might include, and certainly the focus should
be on the aspects of the models that affect information lifecycle decisions. Some of the aspects
that we could envision being captured in such mission models include, but are not limited to, the
following:

 The types, characteristics, and rates of information used in the mission, which can affect
the depreciation factors and values used in the valuation function. For example, a mission

Approved for Public Release; Distribution Unlimited.

 76

involving rapidly unfolding situations (e.g., Time Critical Targeting) might include high
rates of information, with new information rapidly supplanting old information, and ag-
gressive devaluation and movement of information.

 Groups of information associated with the mission and/or rules governing the formation
of groups.

 The relative importance of operations within the mission, e.g., a mission might include
real-time data streams being processed by the IM system through publication and sub-
scription (the Submission and Brokering services), storage and retrieval of archived in-
formation (the Repository and Query services), and Command/Control traffic (Event
processing). Particular missions or parts of missions can rely more heavily on one or
more of these operations, and the ILM system can use this knowledge in scheduling valu-
ation and movement, and in setting the storage thresholds.

Use of VFILM Fuzzy Decision Algorithms in Other Contexts. In this project, we made a
good case for the use of fuzzy logic based functions for decision making of particular types, spe-
cifically those which need smooth transitions based on partial orders and with relative valued
inputs. These same reasons are why fuzzy logic is used in subway, thermostat, and elevator algo-
rithms. There are IM software adaptive decision engines that might benefit from fuzzy logic
based algorithms, also, including two areas in which AFRL is funding research: QoS manage-
ment and adaptive security.

Coordinating Valuation Function between Multiple ILM Instances. When IM services are
distributed and federated, they can include multiple and distributed ILM instances. Additional
semantics and configuration options can result in more effective ILM services and, subsequently,
more effective IM services. While this is a rich area of research, a few initial thoughts follow.

Consider a deployment in which an IM system (or multiple instances of an IM system) utiliz-
es multiple repositories but with a single ILM service running one instance of the VDF, as shown
in Figure 47. If information is duplicated in the repositories, then the single VDF function will
distribute the information in both repositories approximately the same way.

However, if the ILMs use different, but coordinated, VDFs, IOs can be distributed within the
repositories so that each contains a different set of IOs in level 0 storage, effectively increasing
the number of IOs available, as shown in Figure 48.

Figure 47. Using the same valuation function between multiple ILM instances will result

in approximately the same IO distribution.

Client
Query

Service

Repository Service A

Level 0

Storage

Level 1 Storage

Repository Service B

Level 0

Storage

Level 1 Storage

Approved for Public Release; Distribution Unlimited.

 77

Knowledge of resource availability and QoS awareness can be combined with the ILM capa-
bilities to base the IO distribution on the needs of clients. As shown in Figure 49, if there are
multiple clients using an IM system (or distributed IM services) with multiple repositories across
multiple storage levels, correctly crafted and coordinated VDFs can ensure the IOs most critical
to each client are distributed into the repository most accessible to the client.

Figure 49. Network topography, endpoint requirements, and bandwidth availability can

be taken into account to move IOs close to the clients that need them.

Client 1

Interested in

green

objects

Repository Service A

Level 0

Storage
Level 1 Storage

Repository Service B

Level 0

Storage
Level 1 Storage

Client 2

Interested

in red

objects

Line width indicates link bandwidth.

Figure 48. Using different valuation functions can result in a better distribution of IOs

in level 0 store across multiple repositories.

Client
Query

Service

Repository Service A

Level 0

Storage

Level 1 Storage

Repository Service B

Level 0

Storage

Level 1 Storage

Approved for Public Release; Distribution Unlimited.

 78

5.0 CONCLUSIONS

The VFILM project was a successful research effort that produced significant advancements in
the investigation, prototyping, and evaluation of mission-driven information lifecycle manage-
ment for IM services. The architecture, design, and prototype software that we developed under
this project provide a foundation for ILM in enterprise and tactical environments.

The VFILM architecture and design include triggering of information lifecycle management
based on mission events and mission-based policy, valuation of information using fuzzy logic
algorithms based on the information‟s urgency to ongoing mission operations, grouping of in-
formation based on common attributes and dependencies, and migration and retrieval of informa-
tion objects and groups.

The major contributions of the VFILM project include:

 A prototype ILM service that provides mission-aware information valuation, control of
HSM movement of information between levels of storage, and support for AFRL Phoe-
nix IM services, Information Objects, and repositories.

 An ILM-HSM interface that abstracts the details of specific HSMs, file systems, and re-
positories.

 A novel approach to information valuation, supporting an extensible multi-factor assess-
ment of the relative values of information using fuzzy logic. The approach produces a
partial order of information depreciation, handles dynamic conditions that can change the
worth of information, and avoids the thrashing that is possible with fixed or static valua-
tion thresholds.

 A set of experimentation results and unit tests, which are useful as a functional and per-
formance test suite for ILM services.

While the focus of this project was on the research and rapid prototyping of ILM capabilities,
the prototype software that we developed is a useful result, with sufficient functionality to ex-
plore full integration with Phoenix capabilities and transition into experimental testbeds or dem-
onstration platforms.

Further research building upon this foundation can explore additional richness in the VFILM
prototype, e.g., to expand its mission models and the factors utilized in valuation; expanding the
query service to be more aware of the hierarchical storage levels and to exploit this knowledge to
order query responses; and to explore distributing and coordinating ILMs for improved storage
and access to critical information.

Approved for Public Release; Distribution Unlimited.

 79

6.0 REFERENCES

[1] Constantin von Altrock, “Fuzzy Logic and NeuroFuzzy Technologies in Appliances,” Embedded

Systems Conference, 1996.
[2] Ying Chen. Information valuation for information lifecycle management. 2nd Intl. Conf. On Auto-

nomic Computing, June 13-16, 2005.
[3] Jeffrey Cleveland, Shane Clark, Joseph Loyall, Jonathan Webb, “Value Factor based Information

Lifecycle Management Installation, Operations, Administration, & Demonstration Guide,” October

28, 2010.
[4] Christine Taylor Chudnow. Information lifecycle management and the government. Computer

Technology Review, August 1, 2004.
[5] Cluster File Systems, Inc. “Lustre: A Scalable, High-Performance File System.”

http://eugen.leitl.org/whitepaper.pdf.
[6] http://dvdvault.sourceforge.net/
[7] -, “Fuzzy Logic,” Stanford Encyclopedia of Philosophy, August 4, 2010,

http://plato.stanford.edu/entries/logic-fuzzy/.
[8] Jörg Gebhardt, Constantin von Altrock, “Recent Successful Fuzzy Logic Applications in Industrial

Automation,” Fifth IEEE International Conference on Fuzzy Systems, September 1996, New Or-
leans, LA.

[9] Robert Grant, Vaughn Combs, James Hanna, Brian Lipa, James Reilly, "Phoenix: SOA Based In-
formation Management Services," Proceedings of the 2009 SPIE Defense Transformation and Net-
Centric Systems Conference, Orlando, Fl, April 2009.

[10] Ming Ho, B. Robertson, “Elevator Group Supervisory Control Using Fuzzy Logic,” Canadian Con-
ference on Electrical and Computer Engineering, September 25-28, 1994, Halifax, NS, Canada.

[11] International Electrotechnical Commission (IEC), “IEC 1131 – Programmable Controllers, Part 7 –
Fuzzy Control Programming,” January 1997.

[12] Bart Kosko, Satoru Isaka, “Fuzzy Logic,” Scientific American, July 1993.
[13] Richard Kugler, Michael Baranick, and Hans Binnendijk. Operation Anaconda lessons for joint

operations. Center for Technology and National Security Policy, National Defense University,
March 2009.

[14] -, LITENING, Advanced Airborne Targeting and Navigation Pod. Federation of American Scien-
tists Military Analysis Network. October 28, 1999, http://www.fas.org/man/dod-
101/sys/smart/litening.htm.

[15] Joseph Loyall, Jeffrey Cleveland, Jonathan Webb, Shane Clark, “Value Factor based Information

Lifecycle Management Experiment Plan,” August 11, 2010.
[16] Joseph Loyall, Shane Clark, Jeffrey Cleveland, Jonathan Webb, “Value Factor based Information

Lifecycle Management Experiment Results,” August 11, 2010.
[17] Joseph Loyall, Matthew Gillen, Aaron Paulos, Larry Bunch, Marco Carvalho, James Edmondson,

Douglas Schmidt, Andrew Martignoni III, Asher Sinclair, “Dynamic Policy-Driven Quality of Ser-
vice in Service-Oriented Information Management Systems,” Software: Practice and Experience,

2011.
[18] http://wiki.lustre.org/index.php/Main_Page
[19] -, “MASSIVE 4.0, Supporting V-Ray Rendering, is Now Available,” Business Wire, February 18,

2010, http://www.thefreelibrary.com/MASSIVE+4.0,+Supporting+V-
Ray+Rendering,+is+Now+Available-a0219126342.

[20] Mitsubishi Electric, AI Supervisory Control System, http://www.mitsubishi-
elevator.com/innovations/control_system.html.

[21] http://openhsm.sourceforge.net
[22] http://www.opensolaris.org/os/project/samqfs/
[23] http://opensolaris.org/os/project/adm/WhatisADM/

Approved for Public Release; Distribution Unlimited.

 80

http://wiki.lustre.org/index.php/Main_Page
http://www.thefreelibrary.com/MASSIVE+4.0,+Supporting+V-Ray+Rendering,+is+Now+Available-a0219126342
http://www.thefreelibrary.com/MASSIVE+4.0,+Supporting+V-Ray+Rendering,+is+Now+Available-a0219126342
http://www.mitsubishi-elevator.com/innovations/control_system.html
http://www.mitsubishi-elevator.com/innovations/control_system.html

[24] D. Robbins. Unmanned Aircraft Operational Integration Using MITRE's Cursor on Target. The
Edge, MITRE, Volume 10, Number 2, Summer 2007.

[25] Beth Pariseau. Does EMC‟s ILM strategy really solve complexity? Storage Technology News, Au-
gust 30, 2005.

[26] Thomas E. Sowell, “Fuzzy Logic for “Just Plain Folks””, http://www.fuzzy-logic.com/.
[27] Jessika Toothman, “How Rice Cookers Work,” http://home.howstuffworks.com/rice-cooker2.htm.
[28] L.A. Zadeh, “Fuzzy Sets,” Information and Control, 8, 338-353 (1965).

Approved for Public Release; Distribution Unlimited.

 81

http://www.fuzzy-logic.com/
http://home.howstuffworks.com/rice-cooker2.htm

7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFRL Air Force Research Laboratory
ADM Automatic Data Migration
BFT Blue Force Track
CSV Comma Separated Value
DB Database
FCL Fuzzy Control Language
FFLL Free Fuzzy Logic Library
FIS Fuzzy Inference System
GB Gigabyte
GUI Graphical User Interface
HSM Hierarchical Storage Management
ID Identifier
IEC International Electrotechnical Commision
ILM Information Lifecycle Management
IM Information Management
IMS Information Management Services
IO Information Object
ISQM Information Space QoS Manager
ISR Intelligence, Surveillance, and Reconnaissance
MB Megabyte
MDDB Metadata Database
MPEG-2 Moving Picture Experts Group Standard Video Encoding Format Version 2
NAS Network Attached Storage
PDD ProData
PI Principal Investigator
PM Program Manager
QED QoS Enabled Dissemination, another AFRL project led by BBN Technologies
QoS Quality of Service
RAM Random Access Memory
RMAN Recovery Manager
SAN Storage Area Network
SATA Serial Advanced Technology Attachment
TIM Technical Interchange Meeting
VDF Value Depreciation Function
VFILM Value Factor driven Information Lifecycle Management
XML Extensible Markup Language

Approved for Public Release; Distribution Unlimited.

 82

APPENDIX – CHRONOLOGICAL ACCOUNT OF TECHNICAL STATUS

This section describes the chronological technical status as reported monthly during the Enter-
prise Information Lifecycle Management contract. These are illustrative of the evolution of the
research results, design, and implementation over the twelve month period of the contract.

Inception through November 2009

During the report period, we kicked off the VFILM project. We established the following to help
facilitate research and development:

 A Wiki
 A code repository in Subversion
We scheduled the kickoff meeting with AFRL for December 8 and began preparing for it.
We established accounts on the AFRL Jiffy reporting system for providing deliverables to

AFRL.
We began designing the interfaces and algorithms for the VFILM prototype Information Li-

fecycle Management service. We also began investigating existing hierarchical storage manage-
ment systems to evaluate the common features that should be simulated and their suitability for
use in VFILM. These will be presented in the kickoff meeting with AFRL.

December 2009

During the report period, we achieved the following technical accomplishments:

 We revised the ILM interface definition.
 We revised the vdf() algorithm.
 We analyzed the VFILM metrics from the VFILM proposal and made some changes that

improve the metrics‟ evaluation of VFILM success and make them more reasonable to

collect.
 We conducted some additional analysis of existing hierarchical storage management ca-

pabilities.

We held a kickoff meeting with AFRL on December 8, at which we presented the following:

 Motivation and goals of the project.
 Schedule, tasks, and deliverables.
 Our planned technical approach.
 The planned current tasks and architecture of the planned VFILM prototype.

January 2010

During the report period, we achieved the following technical accomplishments:

 Implemented an initial ILM service.
 Built Phoenix and the ILM service and got them running in Java 7. Java 7 includes the

NIO.2 filesystem, which provides more control over the movement and copying of files,
monitoring of directories and files, support for symbolic links, better scaling for large di-
rectories, and other features that will prove useful for implementing HSM functionality or

Approved for Public Release; Distribution Unlimited.

 83

Figure A-1. Design of the ILM Service

as of February 2010.

HSM and Repository

Services

ILM-HSM

Adapter

ILM

Controller

Value

Depreciation

Function

ILM Event

Manager

Event Source

Mission & System events

ILM events

Access IOs

Trigger HSM

Evaluate IOs

Update Value Function

an interface to HSM functionality. Java 7 is also backwards compatible with the previous
IO system.

 Investigated the Phoenix Query and Repository services and Berkeley XML DB usage.
 Refined the VFILM design to take advantage of the current Phoenix capabilities to sup-

port rapid prototyping.
 Investigated the Lustre file system for its suitability to support a simulated HSM.
 Designed an ILM-HSM interface and began prototyping it.
 Produced slides for the AFRL technology council briefing scheduled for February.
 Scheduled the next technical interchange meeting with AFRL for February 23, 2010.

February 2010

During the report period, we focused on development of the VFILM prototype and hosting a
technical interchange meeting with AFRL to report on progress to date.

We refined the design of the ILM service to identify the following four key components,
shown in Figure :

 An ILM Event Manager that listens for incoming mission/system events and translates
them into internal ILM events.

 An ILM Controller that reacts to ILM events, updates the value depreciation function,
triggers IO evaluations, and triggers HSM actions.

 The Value Depreciation Function that evaluates information objects using a specified
policy.

 An ILM-HSM Adapter that abstracts
away the specifics of the HSM and
Phoenix Repositories being used.

We implemented an initial prototype ILM
Event Manager that receives events through a
Phoenix Event Channel. We also defined an ini-
tial set of ILM events that includes the follow-
ing:

 NeedSpace – An event indicating that a
specific amount of space in Level 0 store
will be needed.

 Cleanup – An event indicating that a
specific amount of time is available to
perform information valuation and/or
movement.

 MaintainFreeSpace – An event indicat-
ing that a specific amount of free space
should be maintained in Level 0.

 InfoValued – An event indicating that
something has happened that increases
the urgency (i.e., the valuation) of some
set of information.

Approved for Public Release; Distribution Unlimited.

 84

 InfoDevalued – An event indicating that something has happened that reduces the urgen-
cy of (i.e., devalues) a set of information.

We also identified an initial set of example mission and system events associated with opera-
tions or system conditions that are recognizable to a user or operator, and that map to the above
ILM events. These include the following:

 MissionPrep – Preparing for an upcoming mission or operation, in which the NeedSpace

ILM event might be triggered to free up an amount of space that that mission or operation
is expected to need, or the Cleanup ILM event to free up as much space possible until the
mission or operation commences.

 MissionBegin – The start of a mission or operation, which could trigger the InfoValued
ILM event to increase the valuation of information associated with the mission or opera-
tion, or the NeedSpace ILM event to free up space that the mission or operation needs.

 MissionEnd – The end of a mission or operation, which could trigger the InfoDevalued
ILM event for information associated with the mission or operation.

 ThresholdCrossed – A system event indicating that the repository size has exceeded a
specific threshold, which could trigger the MaintainFreeSpace ILM event to move
enough information to return to the desired level of free space.

We also developed an initial prototype of a Value Depreciation Function built using jFuzzy-

Logic, an open-source fuzzy logic package. jFuzzyLogic is written in Java and implements
Fuzzy Control Language, standardized by the International Electrotechnical Commission in
standard IEC 1131-7.

The VDF implementation consists of the following three components:

 The fuzzy sets representing the inputs (e.g., IO size, age, relevance) and output (i.e., the
partial order valuation) to the VDF function.

 A set of fuzzy logic rules that combine the fuzzy inputs into a degree of membership in
the output set.

 A set of Java objects for accessing the “real world” values for the fuzzy inputs, stored in

information metadata, information or other Context objects, system attributes, global
state (i.e., the world context), or other places.

In the upcoming months, we will be defining the actual input sets and fuzzy logic rules that
will implement a demonstrably useful VDF function.

We refined the design of the ILM-HSM Adapter. As part of this, we defined an interface that
we believe will support a variety of HSM implementation options. We plan to implement our
initial prototype to work with the current Phoenix Berkeley DB implementation in the following
ways (shown in Figure):

 Takes advantage of a separate Metadata Database (MDDB) and each Information Object
being stored in a separate file. Both of these are true in the Phoenix 1.4.6 repository.

 Maintains a separate Level 0 store (not under HSM control) and Level 1 store (under
HSM control).

 When an Information Object should be moved, the ILM-HSM adapter physically moves
the IO‟s file from the Level 0 filesystem to the Level 1 filesystem, placing the under

HSM control.

Approved for Public Release; Distribution Unlimited.

 85

Figure A-2. Design of the ILM-HSM Adapter as of February 2010.

Repository

Service

ILM

Controller

Berkeley

Repo

Metadata

DB

Metadata

DB

●
●
●

IO

File

●
●
●

Level 0 Store

(not under HSM)

Level 1 Store

(HSM control)

archive

query

ILM-HSM

Adaptermove

IO

File

move

file

update file

reference

IO

File

 The ILM-HSM adapter then updates the file reference for the IO in the MDDB to reflect
the new location.

We investigated Lustre further to determine its suitability as an HSM. Lustre is a distributed
file system, not an HSM solution. Lustre has an HSM project, but its focus is not the provision of
an HSM, but instead to produce an interface for the Lustre filesystem to use other HSMs, similar
to the ILM-HSM adapter that we are prototyping. Currently, there is no implementation available
for the Lustre HSM. The Lustre HSM project does specify a policy engine, the open source Rob-
in Hood policy engine, which could potentially be used to control archiving and retrieving IO
files. Our current approach is to develop the ILM-HSM adapter and simulate the HSM functio-
nality, to not be gated by any external HSM development effort. We also expect that Lustre is
not suitable for Level 0 storage since it is a distributed filesystem, but that it is an option for
higher level storage.

March 2010

During the report period we focused on development of additional components of the VFILM
Information Lifecycle Management service, shown in Figure .

During the report period, we developed initial prototypes of the ILM-HSM Adapter and ILM
Controller components.

The prototype ILM-HSM adapter performs the following:

 At initialization connects to the Repository Service to retrieve the instance of the Berke-
ley Repository being used.

 Hooks into the Berkeley Repository allowing it to:
o Retrieve Information Objects from the repository
o Maintain a buffer of unevaluated information objects
o Move Information Objects between storage levels
o Access specific configuration details (currently Level 0 and Level 1 store loca-

tions)
 Maintains a specific amount (a threshold) of free space on level 0 store

o Receives statistics from the File System Monitor (see below) about free space
o Moves IOs to higher level stores to maintain a desired level of free space in the

level 0 store

Approved for Public Release; Distribution Unlimited.

 86

 React to ILM Controller commands (triggered by ILM events)
o Free additional space
o Change the free space threshold

 Maintains IO ID to information value pairing (used for deciding which IOs to move)
We also developed a file system monitor that is used by the ILM-HSM adapter to detect

whether the amount of disk space used is beyond a threshold. The file system monitor gets the
locations of the stores from the ILM-HSM adapter at initialization. Then it periodically checks
the amount of free space and reports it to the ILM-HSM adapter.

The prototype ILM controller receives ILM events (implemented as Phoenix events) from the
ILM Event Manager (described in last period‟s report), interprets the event and then carries out
the proper behavior. The four ILM events that the ILM controller responds to are the following:

 Need Space – When the ILM controller receives a Need Space event, it calls the
move(long numBytes) method of the ILM-HSM adapter

 Maintain Space – When the ILM controller receives a Maintain Space event, it sets the
threshold value on the ILM-HSM adapter.

 Info Valuation – The ILM controller calls the ILM-HSM adapter with a request for a set
of IOs, and then calls the VDF function with the set of IOs. The ILM passes the resulting
VDF values to the ILM-HSM adapter.

 Clean Up – The actions associated with this event still need to be worked out. The
strawman algorithm now is that the ILM would complete any queued tasks, then would
initiate ILM-HSM movement to balance the level 0 and level 1 store (i.e., so that all the
IOs in level 1 have VDF values higher than those in level 0). Then the ILM would trigger
re-evaluation of all the IOs until a particular maximum time has passed or the entire store
has been re-evaluated.

In the course of developing support for managing IOs associated with a mission (functionali-
ty scheduled for Spiral 1), we decided that mission relationship is just a specific example of
group membership (functionality scheduled for Spiral 2). That is, a set of IOs associated with a
particular mission is a “group” of IOs, similar to all IOs of a particular type, from a particular

publisher, with imagery of a particular area, or any other grouping relationship. Therefore, we
began designing and prototyping a grouping capability for VFILM. A group is defined as a pre-
dicate that can be matched to a set of IOs. For example,

publisherID=“241895” AND publishTime > 02:00 AND publishTime < 0:400

defines a group of IOs published from a specific publisher during a two hour window of time.
We developed a Group Manager that maps the predicates defining groups to fuzzy logic va-
riables, e.g.,

publisherID=“241895” AND publishTime > 02:00 AND publishTime < 0:400 

MissionState = ActiveMission

The group states associated with an IO can be translated by Fuzzy Variable beans into nu-
merical values used to evaluate IOs. These numeric values are then interpreted by the fuzzy logic
rules in the ILM to determine the IO‟s membership in various fuzzy sets. In the case of the above
example, sample rules would be

Approved for Public Release; Distribution Unlimited.

 87

MissionBean:
if(stateList.contains(“ActiveMission”)

missionRelated = 1.0;

else if(stateList.contains(“FutureMission”)

missionRelated = 0.5;

else missionRelated = 0.0;

FCL snippet:

FUZZIFY missionRelated
 TERM high := (0.3, 0) (1.0, 1)
 TERM low := (0, 0) (0.3, 1.0)
ENDFUZZIFY

 …
IF missionRelated IS high THEN relevance IS high
IF missionRelated IS low THEN relevance IS low

We plan to have a richer set of examples in the upcoming demonstration.
We began defining a scenario for demonstrating the VFILM prototype. The demonstration

would involve multiple missions (with the associated mission prep, start, and end events), and
with IOs of various sizes. The ILM would attempt to maintain a particular threshold of free
space, and would need to manage the free space as missions start and end, including overlap, and
as mission prep events occur. The demonstration would show the ILM ability to control move-
ment of information, would show the values indicating how information value depreciates as the
mission proceeds, and would show the impact on running queries of the ILM processes.

We also started developing an experimentation plan during the report period. As of the time
of this report, we have defined experiments for four of the twelve defined VFILM metrics.

April 2010

During the report period, we continued working on the Spiral 1 VFILM prototype, shown in Fig-
ure . We integrated, tested, and refined the prototype elements designed and developed during
previous report periods, and designed and developed two new elements of functionality.

The first element of new functionality that we designed and developed was support for mis-
sion events and groups. As reported last period, we began implementing IO grouping as a super-
set of the association of IOs with missions, i.e., treating mission association as an example of
more general group membership. During this report period, we designed and developed an ILM
Indexing component that we use to associate IOs with groups. The prototype Indexing compo-
nent does the following:

 Maintains an instance of Berkeley XML DB, containing the Context ID of each IO, as
well as the fields over which group predicates reference.

 Provides a way of retrieving all IOs associated with a group, specifically for the purpose
of performing information valuation in response to events associated with a certain
group. For example, a mission end event can affect the valuation of the group of IOs re-
levant with that mission.

 Returns the group states associated with each IO in a given list. These are used by the
Value Depreciation Function to determine group state when an IO is evaluated.

Approved for Public Release; Distribution Unlimited.

 88

 Inserts new IOs into the Index.
As reported during the last report period, we have identified four primary ILM events that the

initial ILM prototype needs to respond to. Mission events (such as the preparation for a mission,
mission commencement, or mission completion) and System Events (such as disk full events) are
mapped to ILM events by the ILM Event Manager, and the ILM events then are interpreted by
the ILM controller and can result in IO evaluation, triggering information valuation, information
movement, or both. The four ILM events that we have implemented the prototype ILM controller
to respond to are the following: Need Space, Maintain Space, Info Valuation, and Clean Up. As
the other three were implemented during the previous report period, the other piece of new func-
tionality that we concentrated on during this report period is the ILM controller‟s Clean Up func-
tion. We designed an initial version of the Clean up behavior that consists of sorting IOs stored
in different levels of storage so that higher valued IOs are on lower level stores while also main-
taining space thresholds on all levels of storage. We began prototyping an implementation of this
functionality in the ILM controller.

Our integration and refinement of the other VFILM components have brought us to a demon-
strable state with the Spiral 1 VFILM prototype. During the report period, we successfully tested
the following scenario:

1. Mission client sends to the Event Notification Service a GroupEvent containing a predi-
cate describing a group, and a state of “ActiveMission”.

2. Group manager receives the GroupEvent from the Event Notification Service, and up-
dates its internal map of group states.

3. A publisher client pushes two sets of Information Objects. One set is in the group set to
“ActiveMission”, the other is not.

4. As the IOs are archived, the HSM Adapter passes them to the Value Depreciation Func-
tion for evaluation. The VDF uses a set of rules based on IO size and Mission Status.
IO‟s in the ActiveMission group are ranked more valuable.

5. After enough IOs are published a File System Monitor that was running in the back-
ground triggers a Move event.

6. Some of the IOs not in the “ActiveMission” group are automatically moved to a higher

level store to bring the amount of free space in the Level 0 store to the acceptable level.

During this period we also started documentation necessary for a user manual. We also re-
fined the demonstration scenario that we are targeting for the upcoming technical interchange
meeting with AFRL. Finally, we refined the draft experimentation plan. As of the time of this
report, we have defined draft experiments for nine of twelve defined VFILM metrics.

May 2010

During the report period, we continued working on the VFILM software and completed devel-
opment of the Spiral 1 prototype. We also developed the support code, including clients, scripts,
and GUIs, to support a demonstration of the prototype. We also conducted a technical inter-
change meeting with AFRL and continued to make progress on an experimentation plan. Details
on each of these follow.

Approved for Public Release; Distribution Unlimited.

 89

Figure A-3. Design of the Spiral 1 ILM Service as of May

2010.

HSM and Repository

Services

ILM-HSM

Adapter

ILM

Controller

Value

Depreciation

Function

ILM Event

Manager

Event Source

Mission & System events

ILM events

Access IOs

Trigger HSM

Evaluate IOs

Update Value Function

Group

Manager

ILM Index

File System

Monitor

During the report period,
we completed development of
the Spiral 1 prototype Infor-

mation Lifecycle Management

service, shown in Figure . The
prototype consists of the fol-
lowing elements:

 An ILM Event Manag-
er that listens for in-
coming mission/system
events and translates
them into internal ILM
events.

 An ILM Controller that
reacts to ILM events,
triggers IO evaluations,
and triggers HSM ac-
tions

 The Value Deprecia-
tion Function that eva-
luates information ob-
jects

 The ILM-HSM Adap-
ter that abstracts away
the specifics of the
HSM and Phoenix Re-
positories being used.

 The File System Monitor needed to support ILM-HSM Adapter operations for maintain-
ing thresholds

 The Group Manager that maintains an index (the ILM Index) of predicates defining
groups and identifiers for the groups.

The prototype passes mission events (including mission prep, mission begin, and mission

end) events through a Phoenix Event Channel to an adapter that maps them to ILM events (serv-
ing as our first prototype Mission Model). The ILM Event Manager then passes the ILM events
to the ILM Controller, which acts on the ILM events by running the Value Depreciation Function
over sets of IOs, requesting the ILM-HSM Adapter to move IOs, or both.

The ILM controller responds to ILM events as follows:

 Need Space – Calls the move(long numBytes) method of the ILM-HSM adapter
 Maintain Space – Sets the threshold value on the ILM-HSM adapter
 Info Valuation – Calls the ILM-HSM adapter with a request for a set of IOs; calls the

VDF function with the set of IOs; and passes the resulting VDF values to the ILM-HSM
adapter.

 Clean Up – Sort the IOs in the different levels of storage so that higher valued IOs are on
lower level stores, while maintaining space thresholds on all levels of storage.

Approved for Public Release; Distribution Unlimited.

 90

The VDF is implemented using jFuzzyLogic, as described in previous reports.
The ILM-HSM Adapter utilizes the existing Phoenix Repository Service to retrieve the in-

stance of the Berkeley Repository being used. It then interfaces to the Berkeley Repository to
retrieve IOs, maintain a buffer of unevaluated information objects, move IOs between storage
levels, and access the location of the various storage levels. The ILM-HSM Adapter also re-
sponds to ILM Controller commands, including to free up space or to change the free space thre-

shold.
The free space threshold is used by the ILM-HSM Adapter to maintain a desired threshold of

free space on the Level 0 store. To accomplish this, we developed a File System Monitor that
provides statistics periodically about the amount of free space in Level 0. When the File System
Monitor indicates that the amount of free space has crossed the threshold, the ILM-HSM Adapter
moves IOs to Level 1 store to restore the desired level of free space in the level 0 store.

Finally, the ILM-HSM Adapter maintains IO ID to information value pairing (used for decid-
ing which IOs to move).

We attended a TIM at AFRL on May 26, 2010, where we presented on the status of the
VFILM project, including the following:

 The goals of the VFILM project.
 The schedule and progress since the last review.
 The design, implementation, and status of the Spiral 1 VFILM prototype.
 The VFILM experimentation plan.
 The next steps.
We also demonstrated the Spiral 1 prototype at the TIM. In preparation for this, during the

report period we developed specific fuzzy sets and FCL rules defining a prototype VDF, created
publishing and querying Phoenix clients, created a graphical user interface, and developed a
demonstration scenario and scripts.

For the demonstration of the current prototype, we defined three fuzzy sets, representing
Mission Association, Age, and Size. The membership functions defining the IO Size set (ioSize)
and the Mission Status set (missionStatus) use piecewise linear functions, while the membership
function defining the IO age (age) uses a sigmoidal function. We developed Java classes to ex-
tract the actual age, size, and mission status values from an IO and a mapping of these classes to
the corresponding FCL variables.

We then developed a set of FCL rules combining these fuzzy variables into membership in a
move output set, representing the relative depreciation value of a given IO. The FCL rules assign
weighting to the variables, with missionStatus weighted the heaviest, then age, and finally ioSize.
Membership in the output set move represents the partial order used by the ILM and ILM-HSM
adapter to choose the IOs to move when IOs need to be moved.

The demonstration showed three dynamic and overlapping missions, and demonstrated IO
valuation based on mission events, movement of IOs between storage levels, IO valuation and
movement based on a system event (the amount of free space in Level 0 crossing a threshold),
and the Cleanup action to balance the amount and value of IOs between levels of storage.

During the demonstration, we showed the display in Figure that indicated the number of IOs
(Y axis) in each level of storage using colors (red for Level 0, blue for Level 1) and the VDF
valuation (i.e., level of membership in the move set) shown on the X-axis.

Approved for Public Release; Distribution Unlimited.

 91

We also showed the display in Figure that indicated the amount of free space in Level 0 and the
threshold that would trigger a system event to move IOs. The X axis is a rolling window of time
as the demonstration proceeded and the Y axis indicates the free space in MB.

During this report period, we completed a first draft of an experiment plan and began review-

ing it internally. We plan to provide it to AFRL during the next report period.
During this period we also continued writing a user manual. We also plan to provide that to

AFRL during the next report period.

Figure A-5. Free space and threshold display from the May 2010 Spiral 1 demonstration.

Horizontal marks indicate

current storage thresholds

Free Space on Level 0

Vertical marks indicate an

event happened at this time Trigger Move Threshold Stop Move Threshold

Figure A-4. VDF valuation distribution display from the May 2010 Spiral 1 demonstra-

tion.

Approved for Public Release; Distribution Unlimited.

 92

June 2010

During the report period, we wrapped up Spiral 1 efforts and commenced Spiral 2 efforts. We
developed and delivered documentation for the Spiral 1 prototype and an experimentation plan.
We also commenced development of the Spiral 2 prototype in parallel with conducting experi-
ments on the Spiral 1 prototype. Details on each of these follow.

We wrapped up Spiral 1 efforts with the production of documentation of the prototype soft-
ware in a Spiral 1 VFILM Installation, Operations, Administration, & Demonstration Guide, and
delivery of the document to AFRL for Government comments on June 10, 2010. The document
describes how to install the VFILM Spiral 1 prototype software, how to build and configure the
VFILM Spiral 1 prototype, and how to run the VFILM Spiral 1 Prototype Demonstration, which
was shown at the VFILM TIM on May 26.

Also during the report period, we commenced Spiral 2 development efforts. We began the
design and implementation of a policy system for the Information Lifecycle Manager service.
Information grouping, storage thresholds, task priority, and the triggering of ILM events need to
be controlled by policy. Our initial design calls for a policy input interface that allows multiple
sources to manage ILM policies, which are based on the policy definition used in the Quality of
Service Enabled Dissemination project. The ILM Event Manager is the primary source of policy
inputs for the current prototype. This allows policy changes to be passed through the system as
standard Phoenix Events. It is also possible to create an ISQM Listener that implements the poli-
cy input interface, allowing the ILM to take advantage of QED policies when appropriate (for
instance inheriting rules related to Query operations). Additionally we plan to modify our current
group definitions to better match the policy definitions from QED (specifically with respect to
importance and precedence). This will add flexibility to the ILM group definitions, while also
increasing compatibility between the two systems.

We also developed a persistent store for IO values, i.e., the results of VDF valuation. Pre-
viously, we were using in memory data structures to store the value of IOs, which required all
IOs stored in the archive to be reevaluated every time the service started. We implemented code
to use a Berkeley DB to store the results of IO VDF valuation, so the values are now persistent
from run to run. As part of this, we developed a Value Store Interface, which allows for easily
replacing the new Berkeley DB Value Store with the previously used In Memory Value Store, or
any possible future implementations.

We also made tuning and bug fix improvements to the VFILM prototype, several of which
were motivated by observations from or bugs discovered during experimentation (described be-
low). These included changes to the ILM service and its constituent components: the Event
Manager, Controller, Group Manager, ILM Index, and ILM-HSM Adapter.

Also during the report period, we delivered a draft VFILM Experiment Plan, Version 1.0 to
AFRL for comments. We also began conducting experiments as defined in the plan. As part of
setting up the experiments, we revised some of the experiment definitions to reflect more accu-
rately the current state of the VFILM design and prototype. We plan to revise the document and
provide a revision to AFRL that accurately reflects the experiments that are conducted.

We conducted Experiment 1 – ILM Responsive to Events, and confirmed the hypothesis and
sub-hypotheses. We also conducted Experiment 2 – Maintain Level 0 Store, and confirmed its
hypothesis and sub-hypotheses. For each hypothesis, we have written a JUnit test that can be run
at build time to ensure that the prototype is functioning properly. We also wrote supporting code
in the form of several wrapper classes that allow us to time relevant operations without making
source changes that must be reversed later.

Approved for Public Release; Distribution Unlimited.

 93

We developed much of the supporting code needed to run the Scalabability (Experiments 3
and 4), Correctness compared to Baseline Phoenix (Experiment 5), Performance compared to
Baseline Phoenix (Experiment 6), and Mission Relevance (Experiment 7). There is some addi-
tional setup work to be done before some of these experiments can be run, e.g., scalability testing
requires long-running operations that must be repeatable so we need scripts to automate the ex-
periment runs. We will be completing this support software and experiments in the coming
months.

July 2010

During the report period, we continued Spiral 2 efforts. We refined several of the experiments
defined in the Experiment Plan document and executed all of the proposed experiments. Addi-
tionally we created a draft of the Experiment Results document encompassing our results for six
of the seven defined experiments. We also refined the design of and implemented policy capabil-
ities for the VFILM Spiral 2 prototype. Details on each of these follow.

We revised several sections of the VFILM Experiment Plan. These changes mostly clarified
experimental procedures and the metrics being used to evaluate results. The only significant
change had to do with Experiment 7 Mission Effectiveness. We felt that the previous formulation
did not allow for a straightforward, objective conclusion. We have narrowed its scope to focus
on the cost of the added flexibility provided by our use of Fuzzy Control Logic. The VDF's flex-
ibility and potential “Mission Relevance” will instead be treated qualitatively in the form of a
demonstration.

As reported in the previous period‟s status report our initial experiments confirmed the hypo-
thesis and sub-hypotheses for both Experiment 1 – ILM Responsiveness to Events and Experi-
ment 2 – Maintain Level 0 Store. During the last reporting period we completed all necessary
supporting code for experimentation and executed the remaining experiments. Our tests con-
firmed the hypothesis and sub-hypotheses for Experiment 3 – Scalability of the VDF. The two
sub-hypotheses for Experiment 4 – HSM Scalability (time to move IOs scales linearly with the
number of IOs moved and time to move IOs scales linearly with the number of bytes moved)
were confirmed if all Information Objects were assumed to be the same size, the hypotheses
were refuted in the more general case. The results of Experiment 5 – Correctness, confirmed our
hypotheses that query and publish actions would behave the same way in the VFILM prototype
as compared to Baseline Phoenix. Similarly, the results of Experiment 6 – Performance, con-
firmed our hypotheses that the performance of query and publish actions in Baseline Phoenix
would be largely the same as the performance of query and publish actions in the VFILM proto-
type. Lastly the results of Experiment 7 – Mission Effectiveness, indicate that the cost of using a
Fuzzy Control Logic based valuation function is not prohibitively higher than the cost of some
simple function, specifically IO age.

Also during the reporting period we drafted an initial version of the Experiment Results doc-
ument. This document currently contains detailed results and explanations of Experiments 1
through Experiment 6, and will be amended to include Experiment 7. Additionally, we have
started documenting the process of running the software for each experiment; a full write up of
which will be included in our VFILM Installation, Operations, Administration, & Demonstration

Guide.

We also refined the design of and implemented policy capabilities for the VFILM prototype.
Policy changes are carried out by ILM events created by objects implementing the Event Handler
Interface inside the ILM Event Manager. The Event Manager passes incoming Phoenix events to

Approved for Public Release; Distribution Unlimited.

 94

the appropriate event handler which then creates the appropriate ILM events. This allows Phoe-
nix events to trigger policy changes. The Mission Domain Model is an example of one such
event handler. Mission Events are processed by the Mission Domain Model, which then triggers
appropriate policy changes (and other actions) inside the ILM. Phoenix events are not the sole
way of triggering an event handler. For example, an ISQM Listener Event Handler could com-
municate directly with the ISQM and trigger changes in the ILM policy as needed.

During the reporting period we also began to outline a paper showcasing VFILM for submis-
sion to SPIE Defense, Security, and Sensing 2011. The abstract for the paper is due 10/11/2010
with the actual manuscript due 2/14/2011, allowing us the time to receive approval before publi-
cation as specified in the contract.

We also continued to make tuning and bug fix improvements to the VFILM prototype, sever-
al of which were motivated by observations from or bugs discovered during experimentation.
These included changes to the ILM service and its constituent components: the Event Manager,
Controller, Group Manager, ILM Index, and ILM-HSM Adapter.

August 2010

During the report period, we continued Spiral 2 efforts. We finalized and delivered the Experi-
mentation Plan document as well as the Experimental Results document. We also implemented
three new event handlers which have allowed us to streamline the design of the ILM compo-
nents, expand our policy capabilities to be compatible with QED, and demonstrate the flexibility
the ILM service can provide. Additionally, we have refined the design of and implemented poli-
cy capabilities for the VFILM Spiral 2 prototype. We also have started work on a demonstration
for the technical interchange meeting in September. Details on each of these follow.

We revised and delivered the VFILM Experimentation Plan; the plan had already been
through several revisions and only minor edits remained. Also during the reporting period we
revised and delivered the Experiment Results document. Along with minor edits and corrections
we also amended the draft from the previous reporting period to include the results from Expe-
riment 7. Additionally, we have finished documenting the process of running the software for
each experiment; the full write up of which will be included in our VFILM Installation, Opera-

tions, Administration, & Demonstration Guide.

We developed three additional implementations of the Event Handler Interface. The Location

Manager subscribes to track data related to a certain unit and triggers group and valuation events
to highly value IOs that are located in the vicinity of the tracked unit. The File System Monitor,
which was previously embedded inside of the ILM-HSM Adapter, has been refactored into an
event handler that triggers movements when free space in level 0 drops below a certain thre-
shold. Lastly, the ISQM Listener implements the Policy Change Listener interface defined in
QED. When an ISQM service triggers a QED policy update the ISQM Listener translates the
QED policy into an ILM Group allowing for QED policies to be used by the VFILM prototype
for IO valuation. These three event handlers both demonstrate the flexibility of the VFILM pro-
totype and expand upon our previously existing policy capabilities.

We designed and implemented the bulk of the code necessary to demonstrate the Spiral 2
VFILM prototype during the upcoming technical interchange meeting. This includes a new GUI
that displays a Cartesian grid with marks representing the storage location and geographic loca-
tion (as determined by metadata) of information objects. Additionally, we developed a mock
ISQM service that implements the same interfaces as the ISQM service in QED and functions in
a similar, albeit simpler, manner. The interaction between the ISQM Listener and the mock

Approved for Public Release; Distribution Unlimited.

 95

ISQM is the same as we expect between the ISQM Listener and an actual ISQM service, the
simplicity has simply been introduced on the opposing side of the ISQM service which would
interact with other QED components.

During the reporting period we also added the use of a thread pool for parallel operations to
the Value Depreciation Function and the ILM Controller. This allows us to not only improve per-
formance, but also for potential integration with QoS resource management. We also continued
to make tuning and bug fix improvements to the VFILM prototype several of which were moti-
vated by observations from or bugs discovered during experimentation. These included changes
to the ILM service and its constituent components: the Event Manager, Controller, Group Man-
ager and ILM-HSM Adapter.

September 2010

During the report period, we continued Spiral 2 efforts. We designed and began implementing a
scheme to manage the movement of metadata and how queries interact with metadata and pay-
loads moved to backing stores. Related to this we also modified the design of the VFILM proto-
type to be compatible with a Repository Service that is managing multiple repositories. We also
hosted a technical interchange meeting with AFRL at BBN where we demonstrated the Spiral 2
prototype. Additionally we have drafted the abstract of a paper showcasing VFILM for submis-
sion to the SPIE conference on Defense, Sensing, and Security.

During the reporting period, we finished the code necessary to demonstrate the Spiral 2
VFILM prototype. This included some modifications to our Mock ISQM service, along with
several publishing clients to carry out the desired scenario. The scenario included three units
publishing track and image data as they traversed an area taking part in three different missions.
The demonstration was carried out during the technical interchange meeting on September 9th
2010.

During the reporting period we designed and began implementing the ability to move meta-
data. This movement includes not only the IO metadata located in the repository, but also data in
the ILM Value Store, and the ILM Index related to that IO. To minimally disrupt the current
Phoenix Repository implementations we have opted to move the data from one Repository, ILM
Index, and ILM Value Store, to a second set located elsewhere (i.e., on a different level of sto-
rage). We modified the VFILM prototype so that it works with multiple repositories. This is
something the Repository Service has supported but was not previously addressed by the ILM
Service. These changes bring the ILM Service more in line with the Phoenix Repository Service.
As a part of this, we streamlined the configuration of the VFILM prototype so that the ILM HSM
Adapter now extracts the necessary settings from the Repositories being used, allowing the ILM
Service to be dropped in alongside a Repository Service with minimal configuration ahead of
time.

We also started work on how to manage queries which are executed over multiple storage le-
vels. We created an ILM Query Context which extends the standard Phoenix Query Context. The
ILM Query Context contains a range of levels to query over and a range of levels from which to
return results. It is important to note that the ILM Query Context will act as a normal Query Con-
text class if the query is sent to a Repository that is not ILM Compatible, and if a standard Query
Context is sent to an ILM Compatible Repository it will execute and return results spanning all
levels. This allows us to achieve the desired functionality and remain compatible with baseline
Phoenix implementations.

Approved for Public Release; Distribution Unlimited.

 96

During the reporting period we also drafted the abstract of a paper showcasing VFILM for
submission to the SPIE conference on Defense, Security and Sensing.

We hosted a Technical Interchange Meeting (TIM) with AFRL at BBN on September 9,
2010. At this TIM, we presented on the current status of the VFILM project, including the fol-
lowing:

 The VFILM project goals, schedule, and progress since the previous TIM (in May 2010).
 The design and prototype implementation of VFILM.
 VFILM experimentation and results.
 Demonstration of the current VFILM prototype.
 Summary and next steps.

Approved for Public Release; Distribution Unlimited.

 97

